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Abstract—In this paper, we have reported birefringence 

manipulation in regenerated high birefringent fiber Bragg grating 
(RPMG) by using CO2 laser annealing method. The results indicate 
that the birefringence of RPMG remains unchanged after CO2 laser 
annealing followed by slow cooling process, but reduced after fast 
cooling process (~5.6×10-5). After a series of annealing procedures 
with different cooling rates, the obtained results show that slower the 
cooling rate, higher the birefringence of RPMG. The volume, thermal 
expansion coefficient (TEC) and glass transition temperature (Tg) 
change of stress applying part in RPMG during cooling process are 
responsible for the birefringence change. Therefore, these findings 
are important to the RPMG sensor in high and dynamic temperature 
environment. The measuring accuracy, range and sensitivity of 
RPMG sensor is greatly affected by its birefringence value. This 
work also opens up a new application of CO2 laser for fiber annealing 
and birefringence modification. 

 
Keywords—Birefringence, CO2 laser annealing, regenerated 

gratings, thermal stress. 

I.INTRODUCTION 

IGH birefringence fiber, also called polarization 
maintaining fiber (PMF), is commonly used in various 

types of fiber optics devices. In sensing application, high 
birefringent fiber was proved to be useful in simultaneous 
sensing of temperature and strain by its two orthogonal 
polarization modes [1], [2]. Other than that, multi-axis strain 
sensing using high birefringent fiber has been demonstrated 
[3]-[5]. Birefringence in PMF is caused by two different 
properties in the fiber, specifically geometrical and stress. 
Stress-induced birefringence is due to the composition 
variation between each section of the optical fiber [6]. High 
mechanical stress is introduced into the optical fiber during 
manufacturing process of high birefringent fiber, which causes 
a weaker stress-induced birefringence in the optical fiber [7]. 
Therefore, the thermal relaxation of mechanical stress by 
annealing process can be increasing the birefringence of the 
fiber [8]. Birefringence enhancement by slow cooling process 
was reported in [9], [10]. Slow cooling process leads to 
volume compaction of stress applying part in high birefringent 
fiber. The Tg and TEC of the silica glass also changes after 
different cooling process [11]-[13]. This can be explained by 
the free volume model of amorphous material [14]. Slow 
cooling after high temperature annealing provides sufficient 
time for the silica molecules arrangement, which leads to 
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lower free volume in the glass matrix [15]. This process is 
reversible and repeatable by reannealing at different cooling 
rates.  

The birefringence of the high birefringent fiber is dependent 
to its thermal history [9]. This behavior affects the accuracy 
and functioning of high birefringent fiber sensor [16], [17] and 
interferometric sensor using high birefringent fiber [10]. 
Therefore, post-treatment of high birefringent fiber to modify 
its birefringence is important for regulating and bettering the 
functioning of high birefringent fiber sensor. 

CO2 laser is a much suitable option for the birefringence 
manipulation study in high birefringent fiber. This is because 
the CO2 laser annealing has the advantages of effective 
control, small and focused targeting area, as well as fast 
response time. The thermal response of the fiber Bragg grating 
has been studied in [18]. The time constant of heating and 
cooling response of fiber Bragg grating is investigated by 
using a periodic CO2 laser irradiation to create a rapid 
temperature change environment. Besides that, the heating 
direction test is also carried out to study the effect due to axial 
asymmetric to the fiber. The results show that the temporal 
thermal response of the fiber Bragg grating is independent to 
the annealing temperature and direction. CO2 laser annealing 
is commonly used in the fabrication process of long period 
grating on optical fiber. CO2 laser annealing is perturbing the 
refractive index of the optical fiber by mechanical stress 
relaxation. Besides that, the thermal stress in the optical fiber 
can also be pertubated with CO2 laser annealing technique by 
manipulating the cooling rate [15]. 

In this paper, we have reported birefringence manipulation 
in regenerated high birefringent fiber Bragg grating (RPMG) 
by using CO2 laser annealing method. The results indicate that 
the birefringence of RPMG remains unchanged after CO2 laser 
annealing followed by slow cooling process, but reduced after 
fast cooling process. After a series of annealing procedures 
with different cooling rates, the obtained results show that 
slower the cooling rate, higher the birefringence of RPMG. 
The volume, thermal expansion coefficient (TEC) and glass 
transition temperature (Tg) change of stress applying part in 
RPMG during cooling process are responsible for the 
birefringence change. 

II.METHODOLOGY 

The thermal response of optical fiber to CO2 laser 
annealing is characterized using a regenerated fiber Bragg 
grating. The grating is annealed with focused CO2 laser beam 
at two different laser power: 3.6W and 7.2W while the 
reflection spectrum of the grating is observed continuously 
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