International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:9, 2016

Importance of Hardware Systems and Circuits in
Secure Software Development Life Cycle

Mir Shahriar Emami

Abstract—Although it is fully impossible to ensure that a
software system is quite secure, developing an acceptable secure
software system in a convenient platform is not unreachable. In this
paper, we attempt to analyze software development life cycle (SDLC)
models from the hardware systems and circuits point of view. To
date, the SDLC models pay merely attention to the software security
from the software perspectives. In this paper, we present new features
for SDLC stages to emphasize the role of systems and circuits in
developing secure software system through the software development
stages, the point that has not been considered previously in the SDLC
models.

Keywords—Systems and circuits security, software security,
software process engineering, SDLC, SSDLC.

1. INTRODUCTION

HOUGH software engineering methodologies have been a

challenging research area in the past 45 years, , the
improvement on software process engineering methods still
have been the most challenging effort in the field of software
engineering. As the literature shows [1], almost all of the
SDLC methodologies have less concrete attention to hardware
security issues during the developing of the software. This will
cause to increase the risks of software systems in terms of
security. Such circumstances let many threats not only would
cause physical and logical destructions but also in a larger
perspective could bring about devastating catastrophes in
social activities and business economics.

The chief importance of this research is to include systems
and circuits security perspectives into the SDLC model in
order to develop secure software systems. Developing secure
software systems involves a concrete attention to the security
issues in the hardware system which the developing software
will run on it. Thereby, considering the hardware security
issues during the SDLC is a vital need for the secure software
development.

In this paper, in Section II, we summarize the cyber security
requirements. In Section III, we study today’s world cyber
security situation. In Section IV, we have a survey on SDLC
models and their characteristics. In Section V, we summarize
the hardware vulnerabilities and their effects on software
systems. In Section VI, we present features for SDLC based
on systems and circuits perspectives and the roles of them on
software development stages during SDLC.

Mir Shahriar Emami is with the Faculty of Engineering, Computer
Engineering Department, Islamic Azad University (Roudehen Branch),
Roudehen, Tehran, Iran (e-mail: mshemami@riau.ac.ir).

II. CYBER SECURITY REQUIREMENTS

One common sentiment across the current researches on
cyber security is the need to distinguish the role of security
requirements areas. These security requirements consist of the
following issues:

e Information Security.

e Software Security.

e Network Security.

e Hardware Security.

e Organization Security.

e Vulnerability Assessment.

e Independent Verification Activities.

e Threat Analysis.

In this paper, the mutual relation between hardware security
concepts and secure software development has been studied. In
fact, considering hardware security issues in software
development stages let software developers to develop secure
platforms to ensure the acceptable level for cyber security. This
also can lead the hardware designers to include new security
elements and features for their new products. The process of
manufacturing can be categorized in several levels as:

e Box Level: Developing a secure computer.

e Board Level: Manufacturing secure appliances.

e Components Level: Designing secure chips, processors,
memories, and off-chip and on-chip communication
circuits and networks.

Manufacturing of such new hardware elements can
guarantee the security of the future software development
systems.

III. TODAY’S CYBER SECURITY SITUATION

Nowadays, cyber security is in serious danger. Spear
phishing, malicious intrusions, SQL injection, cross-site
scripting, worms, Trojans and viruses are quite enough to
endanger security of cyber environments. The SANS Institute
published a report in September 2009 based on attack data,
which collected between March 2009 and August 2009, from
software and appliances in more than 6,000 organizations [13].
Fig. 1 shows a number of cyber-attacks in this period of time.
This figure shows a total number of near 38,000,000 cyber-
attacks just only for three types of them in a period of six
months in the United States [13]. Meanwhile, antiviruses and
firewalls sometimes cause many problems against their
benefits [14]. These situations are enough to convince us to
accept that our cyber security is in danger seriously. In such an
air, it is better to think of secure development of cyber
environments rather than secure them after their development.

1584

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:9, 2016

25.000.000

20.000.000

15.000.000

10.000.000

5.000.000

PHP Remote File Include
Attacks

SQL Injection Attacks Server-Side HTTP Attacks

Fig. 1 A number of some cyber-attacks in USA between March 2009 and August 2009 [13]

TABLE 1
SDLC MODELS AND THEIR CHARACTERISTICS
SDLC Model Specification
Pure Waterfall model o Stage by stage software system development.
[11,[2] o Two distinguishable phases: Analysis and Coding.
o High degree of documentation.
V model o An extension of the pure waterfall model.
[1 o Testing activities begin with the commencement of the project prior to coding stage.
e Various types of functional testing activities are accomplished through the different stages.
Iterative Enhancement o Top-down, stepwise improvement approach to software development.
[4] o The total scope of a project is decomposed to smaller chunks of tasks.
o Supports a strategy to distribute maintenance updates and services to disperse user communities.
Parallel development e In this model different subsystems are developed in a parallel way.
model [1] o This model does not support changing requirements effectively.
Cleanroom [5]-[7] e The term is derived from the process used to produce semiconductors.
Spiral Model An evolutionary model.
[8] Distinguishing the process model differed from software method.

Extreme Programming
(XP) [9], [10]

UML [12]

RUP [11]

Synchronize and
Stabilize.

Ability of navigation between each two stages.

Software development start at the center position then moves clockwise in traversals in a spiral manner to complement the process.
In each traversal some proportion of the work is completed.

Each traversal often results in a deliverable such as specification, prototype and so on therefore by a spiral shape movement the related
activities will mature towards the outer traversal.

A risk-driven approach to the software process rather than document-driven or code-driven process.

An Agile method.

Simple rules.

Ability to change customer requirements in a lightweight manner.

Software developers can confidently respond to modifying user requirements, even late in the life cycle.

Short time to advocate frequent software product releases in short development cycles which is called Time Boxing.

Ability of building working software at the very beginning time of the software development.

Object oriented perspective.

Pay more attention on production.

Iterative software development methodology.

Provides a disciplined approach to assigning tasks and responsibilities within a development organization.

Its activities create and maintain models instead of large amount of paper documents.

It strives to produce the software components as soon as possible.

Through each stage, several iterations may occur.

A mixture approach of planning-driven and agile methods.

The software development process does not start at a complete specification.

Daily build approach to frequently synchronize the works produced via building a new version of the complete system at the end of
each day.

Software development starts at the vision of development team about what they want to do. This vision leads team's manager to an

initial functional specification by a schedule that has multiple milestones whereas each of them shows development sub cycle progress.

Software development and software testing are done in parallel.

A buffer time is provided prior to software release intending to illustrate that the team can easily satisfy the demands of market, for
instance adding a feature.

In the final milestone, the user interface is frozen, and the code is run for a final test, for debugging, and stabilizing sub cycles and
issue a final release.

1585

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:9, 2016

IV. SDLC MODELS

SDLC was demonstrated in 1970 by Royce [1]. The Royce’s
model was called Pure Waterfall model. This model showed
how a software system can be developed stage by stage. Royce
by presenting Waterfall model illustrated that software
development process consists of two basic stages: analysis and
coding. He depicted that these two main stages were obviously
different in the way they executed [1]. Table I shows a brief
look on current SDLC models [3] and their characteristics.

V. SYSTEMS AND CIRCUITS SECURITY PERSPECTIVES

Despite the fact that implementing the security into the
hardware architecture has been the key scope of the hardware
researches, which can be used to guarantee the cyber-security;
thinking of such hardware, which can be released during the
SDLC to improve the cyber-security, is much more important.
As a matter of fact, software systems have been manifesting
themselves in a number of improving and new hardware-based
functions and services. However, previous SDLC approaches
have less attention in terms of hardware vulnerabilities and
their terrible effects on software systems. In this sense, more
studies about those are in a high importance. To date, in
software system development, the employed hardware was
considered attack-free and safe enough but the previous
practices showed that hardware is as vulnerable as software.
This means that hardware circuit vulnerabilities are possible
and terrible. In fact, harmful logics which cause system
problems can be embedded within the hardware design similar
to software viruses and Trojans which bring about software
system security vulnerabilities. Though the developments of
encryption technologies increase the security of software
systems, there are several security-attacks which can endanger
the software system. For example, data may be leaked from the
source of data by physical reading of the permanent memory
before encryption. Table II shows the hardware vulnerabilities
and their origins.

TABLE I
HARDWARE CIRCUITS VULNERABILITIES
Item System Problem Origin
1 Malicious programming of system Flash Rom Firmware
2 Cause the System to Output incorrect data Hardware
3 Creating Wrong Port or Address Hardware-Software
4 Changing the System Internal Timing Hardware
5 Disabling the System Clock Hardware
6 Disabling the System Bus Hardware
7 Forcing Stress Factors Hardware
8 Physical Reading of Permanent Memories Hardware
9 Consumption and Electromagnetic Radiations Hardware-Software

10 Adding Extra Connections Hardware
Using External
Mass Storage Devices

12 Information Leakage

Hardware-Software

Hardware-Software

13 Modifying Internal Circuit Structures Hardware

VI. PROPOSED SSDLC FEATURES

As we mentioned in Section IV, none of the current and
traditional SDLC models have any attention to the hardware

issues during the software development. In Section V, we
clarified the hardware circuit vulnerabilities and the effect of
those on software systems. Now, we are going to consider
hardware circuits’ issues during the software development
process but before that, let us call the main stages of secure
software development life cycle (SSDLC) as: URS, SRS, ADS
and DDS. In Table III we present new features for each stage
of SSDLC.

TABLE IIT
NEW FEATURES IN SSDLC STAGES

ITEM URS SRS ADS DDS

1 X X
2 X X X X
3 X X X X
4 X X
5 X X
6 X X
7 X X
8 X X
9 X X
10 X X X X
11 X X
12 x x
13 X x

In URS, we attempt to find out the user requirements. While
we are trying to recognize the future end users, we can think of
the kind of hardware which they will use or we can think about
their knowledge about the hardware circuits and systems. We
can look at the roles in the organizational chart more precisely
focusing on their experiences about hardware and make some
questions about them. For example, we can ask ourselves if
they can program the Flash Rom of a PC, or who can cause the
system to output incorrect data, or who can probably create
wrong port or hardware address inside the organization.

In SRS we analyze the system requirements. We can think of
the best platform for the developing software system and we
can consider hardware vulnerabilities in that platform. We can
make questions again. If the system internal timing changes by
a hardware attacker what would be the effects of that on the
software system, or if the hardware circuits sustain forcing
stress factors like temperature, voltage, glitches, light, laser and
particles, what kind of information leakage may be occurred
and whether this information could be harmful for software
systems. In this stage, we can also think of external media. For
example, if the software system will use smart cards, we can
think of smart card physical attacks like modifying the material
of the silicon part of its microchip or cutting the internal wires
in order to disconnect the sensors. If these happen, we should
find the probable effects of such kind of attacks on the software
system and the ways that we can protect the side effect of such
kind of attacks.

In ADS which software engineers to bring users’
perspectives into the software architecture, it can be said that
software architecture relates directly to hardware structure.
Hence, any circuit vulnerability can affect directly on software
architecture. In this stage, we can think of hardware

1586

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:9, 2016

requirements of the employed software architecture and their
vulnerabilities in the time we attempt to develop convenient
software architecture for our system.

In DDS the software system is developed in details. In this
stage, we can think of forms of displaying the information if
any information leakage occurs. This means whether the
attackers can see the leaked information through the webpage
which we are designing now or whether they use an external
hardware for reading the information leakage, and the kind of
ports that these attackers may exploit for retrieving the leaked
information.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, a brief look on current SDLC models has been
done and we found that previous and traditional SDLC models
do not pay attention to the systems and circuits’ vulnerabilities
during the software development stages. Although developing
a fully secure software system is not possible, considering the
hardware security issues during the software system
development increases the software system acceptability in
terms of security issues. In this paper, we were successful to
propose new features for the SSDLC model based on hardware
vulnerabilities. This enables secure software system
development. In our future work, we attempt to present an
SSDLC model which includes systems and circuits security
issues during each of the SSDLC stages.

REFERENCES

[1] M. S. Emami, N. B. Ithnin, O. Ibrahim, Software Process Engineering:
Strength, Weaknesses, Opportunities and Threads, 6" International
Conference on Networked Computing, IEEE Seoul Section, pp.148-152,
2010.

[2] W. W. Royce, "Managing The Development of Large Software
Systems", Proceedings, IEEE Wescon, 1970.

[3] H. V. Vliet, Software Engineering Principles and Practices, Book, John
Wiley & Sons, ISBN 978-0-470-03146-9, 2008.

[4] V. R. Basili and A. J. Turner, " Interactive Enhancement: A Practical
Technique for Software Development ", Journal, IEEE Transaction on
Software Engineering, IEEE Computer Society, 1975.

[5] H.D. Mills, M. Dyer, R.C. Linger, "Cleanroom Software Engineering",
Journal, IEEE Software, IEEE Computer Society, 1987.

[6] R. S. Oshana and R. C. Linger, "Capability Maturity Model Software
Development Using Cleanroom Software Engineering Principles -
Results of an Industry Project", Proceedings, 32nd Hawaii International
Conference on System Sciences, IEEE Computer Society, 1999.

[71 R. C. Linger, "Clean room Software Engineering for Zero- Defect
Software", Proceedings, 15th International Conference on Software
Engineering, IEEE Computer Society, 1993.

[8] B. W. Boehm, "A Spiral Model of Software Development and
Enhancement", Journal, Computer, IEEE Computer Society, 1998.

[97 D. Wells, "Extreme Programming: A gentle introduction",
WWww.extremeprogramming.org

[10] "Design Patterns and Refactoring", Lecture, University of Pennsylvania,
http://www.cis.upenn.edu, USA, 2003.

[11] "Rational Unified Process Best Practices for Software Development
Teams", Rational Software Corporation,
www.ibm.com/developerworks/rational

[12] S. R. Schach, Object-Oriented Classical Software Engineering, Book,
Mc Graw Hill, ISBN: 0-07-319126-4, 2007.

[13] “The Top Cyber Security Risks”, SANS, www.sans.org , Sep 2009

[14] P. A. Strassmann, “Cyber Security for the Department of Defence”, June
2009.

Mir Shahriar Emami is Assistant Professor (Senior Lecturer) at RIAU
University and an invited professor at SRBIAU University in Iran, and an
active researcher and entrepreneur in Elites Technology Incubator at Pardis
Technology Park (PTP) in Pardis, Iran. He is postdoc fellow and a computer
science researcher in the field of multimedia security and a key note speaker
in the field of cloud computing in the National Conference on
Interdisciplinary Researches in Computer, Electronics, Mechanical and
Mechatronic Engineering (IRCEM 2016) in Iran. His current research is about
digital image watermarking algorithms for digital asset authentication,
ownership identification and copyright protection. He is also interested in
secure software development. In addition, he is interested in quantum
computing and quantum algorithms. For more information about this author,
the site: www.mirshahriaremami.com is available.

1587

