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On the Study of the Electromagnetic Scattering by
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Abstract—We consider fast and accurate solutions of scattering
problems by large perfectly conducting objects (PEC) formulated
by an optimization of the Method of Auxiliary Sources (MAS). We
present various techniques used to reduce the total computational cost
of the scattering problem. The first technique is based on replacing
the object by an array of finite number of small (PEC) object with the
same shape. The second solution reduces the problem on considering
only the half of the object.These two solutions are compared to results
from the reference bibliography.
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I. INTRODUCTION

THE investigation of scattering problem of an incident
field by large objects is a subject of great interest in the

study of the electromagnetic phenomena. Thus, the scattering
by large object has been an active research topic for many
years, due to the complexity of its computation, which needs
high computer performance and expensive computational cost.
The complexity of such problem leads to the use of efficient
numerical methods for computation of the scattered field.
Different methods have been used to solve this problem like
the finite element method (FEM) [1] in which the geometry is
partitioned into smaller sections , the domain decomposition
method (DDM) [2] based on the decomposition of structure
into many domains, the localized iterative generalized multiple
technique (LIGMT) [3] or method of moment (MoM) [4].
However, the solutions proposed by these methods still having
significant computation time and memory cost due to the
meshing of the structure. So, these methods require more
memory space and long computation time. The method
of auxiliary sources (MAS) is another alternative to these
techniques which has many advantages; being meshless, not
needing a complicated discretisation of the domain, being
simple to implement and broadly being used to model
scattering problems (photonics, metamaterials, arrays, etc.) [5],
[6].

MAS is a numerical method suitable for the resolution of
electromagnetic scattering problem. The solution is obtained
by interchanging the differential equation and boundary
conditions. This method is widely applied for scattering
problem by small objects (compared with the medium wave
length λ) like [9]. The MAS has demonstrated its efficiency
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on reducing the time-consuming and the complexity of such
problem, using a finite number of auxiliary sources chosen to
be placed regularly on the auxiliary surface, either filaments
for 2-D problems or pairs of elementary dipoles for 3-D
problems.

The convergence of the MAS depends on the choice of the
parameters defined in the formulation of this method which
are called: Number of auxiliary sources, auxiliary distance and
auxiliary surface. It is shown that the choice of the number of
auxiliary sources depends on the dimension of the scattering
object. These auxiliary sources are represented by coefficients
in the linear system of the scattering problem. So, for a large
scattering object illuminated by an electromagnetic wave, we
require an important number of auxiliary sources, so, the linear
system, to be resolved, will have a large matrix size. The
inversion of this matrix requires an expansive computation
cost.

In the present paper, we propose a solution to simplify the
problem by reducing the number of the auxiliary sources. For
this, two techniques of solving the problem of scattering by
large objects, based upon the method of auxiliary sources
(MAS) [7], [8] are presented and discussed. The first idea
consists of neglecting the half of the large scattering object
in the formulation of the problem. The second one substitutes
the large object by a finite number of small objects with the
same shape occupying the same volume. The verification of
this approximated method of MAS and the validation of the
computer written code is made by solving the problem of
scattering by an infinite perfectly conducting cylinder with a
plane-wave excitation.

The cylindrical structures, more than other structures, offer
suitable and efficient model for the study of many practical
objects such as trees, human body, antennas and the big
building, which can be the case of our present paper. The
validity of the present approximation is made by comparison
to published results.

II. METHOD OF AUXILIARY SOURCES

Let us consider an infinite cylinder with a surface S,
occupied by a perfectly conducting medium. The surface
is illuminated by an electromagnetic plane wave U i (Fig.
1). In this problem, a time factor ejwt has been assumed
and suppressed, where w = 2πf an f is the frequency of
the incident wave. The scattering problem is reduced to the
resolution of Helmholtz equation given by:



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:9, No:11, 2015

1296

Fig. 1 Geometry of problem

ΔUs (x, y, z) + k2Us (x, y, z) = 0 (1)

Avec k is the wave number in the free space. This equation
must satisfy the boundary conditions:

W
{
Us (x, y, z) + U i (x, y, z)

}
= 0,M (x, y, z) ∈ S (2)

where: U i (x, y, z) is the incident wave; Us (x, y, z) is the
scattered field by the surface S of the structure given in (Fig.
1); W is the boundary condition operator.

The resolution of the scattering problem with the MAS
consists on considering an auxiliary surface S′, placed in the
domain D (Fig. 1)). On this auxiliary surface a finite number
of auxiliary sources are placed on the positions {rn}∞1 . Then,
we consider fundamental solution of Helmholtz equation (1):

{Un (| �rn − �r|)}∞n=1 (3)

This fundamental solution, when projected on surface S, is
written as:

{Un (| �rn − �rs|)}∞n=1 = W {Un (| �rn − �r|)}

| �rn − �rs| =

√
(xn − xs)

2
+ (yn − ys)

2
+ (zn − zs)

2
;

M(xn, yn, zn) ∈ S′;M(xs, ys, zs) ∈ S
In the case of homogeneous, isotropic structure the

fundamental of the Helmholtz equation, for the 2-D problem,
Un is given by this equation:

U (| �rn − �r|) = H
(1)
0 (k (| �rn − �r|)) , (4)

where H1
0 are first kinds Hankel function of the order 0.

If the structure is a perfectly conducting one, (2) can be
written as:

W

{
N∑

n=1

anU (| �rn − �r|)
}

S

= −W
{
U i (x, y, z)

}
S′ (5)

So, the approximate solution of the boundary outside the
domain D is:

Ũs (x, y, z) =

N∑
n=1

anUn (| �rn − �r|) (6)

The application of the collocation method consists on
expressing the boundary condition in a finite number M (rSm);
(m = 1, ...,M ) from the surface S.

For each collocation point M the elementary boundary
condition equation is written as:

N∑
n=1

anUn (| �rn − �rm|) = −U i
m;m = 1, ...,M (7)

where U i
m is the incident wave calculated on the collocation

point with index m.
Equation (7) gives the following equation:

⎡
⎢⎢⎢⎣

U11 · · · U1N

U21 · · · U2N

...
. . .

...
UM1 · · · UMN

⎤
⎥⎥⎥⎦×

⎡
⎢⎢⎢⎢⎣

a1
...
...
aN

⎤
⎥⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎣

U i
1

...

...
U i
M

⎤
⎥⎥⎥⎥⎦ (8)

where Umn = Un (| �rn − �rm|).
The resolution of the scattering problem consists on finding

the coefficients an,(n = 1, ...n = N) by the inversion of the
matrix.

III. FORMULATIONS AND EQUATIONS

Assume an infinite z-axis perfectly conducting cylinder
(PEC) with arbitrary section, placed in free space. The
structure is illuminated by a transverse magnetic (TMz)
plane wave with respect to the z-axis. We denote Einc

and Hinc respectively the electric and the magnetic field,
the components of the electromagnetic fields. A Cartesian
coordinate system x, y, z is introduced. Under these
assumptions, the incident electromagnetic fields are given by
[10]:

Einc
z (x, y) = E0exp {j (K0 (x cosϕinc + y sinϕinc))} ẑ

(9)

Hinc
z (x, y) = −E0

Z0
(x̂ cosϕinc − ŷ sinϕinc)× (10)

exp {j (K0 (x cosϕinc + y sinϕinc))}

where k0 is the wave number in the free space, x̂, ŷ and ẑ are
unit vector respectively in the x, y and z-direction.

According to the MAS fundamental concept [6] for the
perfectly conducting cylinder (PEC), a set of auxiliary sources
are located inside the scatterer, residing on a fictitious auxiliary
surface (a circle of radius a), and surround with circular
surface containing M collocation points (CPs).

The two surfaces are separated by a distance daux named
auxiliary distance which will be adjusted in order to find
the convergent solution of scattering problem. However for
the dielectric cylinder two auxiliary surfaces are placed
surrounding the surface of the scatterer. In this case, we
suppose that M = N .

The boundary condition in the case of perfectly conducting
cylinder (PEC) is given by:

n̂× (
Einc + Escat

)
= 0 (11)

where Escat is the total electric scattered field from the
cylinder, and Einc is the incident wave.

The solution of this problem is given by the resolution of
(8).
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Fig. 2 Large cylinder with a >> λ

Fig. 3 Array of small cylinders

IV. OPTIMIZATION OF THE MAS SOLUTION FOR LARGE
CYLINDERS

A. Finite Number of Small Cylinders

The convergence of scattering problem solution depends on
the number of auxiliary sources. This number also depends on
the width of the scattering object. So, for the large cylinder
we need a large number of auxiliary sources.

The scattering of an electromagnetic wave from a PEC
cylinder, with a radius very bigger then the wave length λ,
has an important number of unknowns in the system of the
problem. This requires an important computational cost.

In this section, we introduce an optimization of the method
based on substitution of the large cylinder by a finite number
of an array of small PEC cylinders. This technique uses the
principle of equal volume model.

We consider a PEC cylinder with length and parallel to
(Oz) axis. Its radius a is very big compared to the wave length
λ. The structure is given by Figs. 2 and 3. The structure is
illuminated by a monochromatic plane wave Einc TMz.

We consider an array of Q PEC cylinders. We suppose now
that a set of Q perfectly conducting cylinders are regularly
distributed in the domain D of the large cylinder PEC as shown
in Fig. 2. The formulation of the problem of diffraction by a
cylinder radius of perfectly conducting larger then λ by the
MAS, is the same compared to the case of a PEC cylinder
having a very small radius compared to λ.

The principle of the proposed method is to replace the large
cylinder with a set of Q cylinders with very small radius with
respect to λ. The problem is reduced to solving the diffraction
problem by an array of a finite number of perfectly conducting
cylinders.

The results of simulations of the two structures are
compared in the following figures. The numerical results (Figs.
4 and 5) obtained by the numerical implementation of the code
of MAS are presented to verify the validity and accuracy of
the above numerical model. In both examples, all cylinders
are perfectly conducting one and illuminated to a plane wave
TMZ with a frequency of 300MHz.

The spatial distribution of scattered energy is characterized
by a cross section. Therefore, the comparison of the results is
based on values of the scattered power from the object which
is characterized by the cross section, for 2D problem, as:

SW = lim
ρ→+∞

[
2πρ

|Esca|2
|Einc|2

]
(12)

Fig. 4 Radar cross section of a cylinder with radius λ (−)
illuminated by TMz with incident angle ϕinc = 0 compared

to RCS of 20 cylinders with radius ai = 0.1λ

Fig. 5 Error on the boundary of cylinder (radius λ)
illuminated by TMz wave (angle ϕinc = 0)

Fig. 4 gives the radar cross section of a circular PEC
cylinder with a radius a = λ placed in the free space
and illuminated by a TMZ plane wave with ϕinc = 0
compared to the radar cross section obtained from an array of
20 homogeneous PEC cylinders. All cylinders have identical
radius ai = 0.1λ.

The small cylinders (ai = 0.1λ) occupy the same volume
with the same shape as that of the large cylinder (a = λ).

The convergence of the solution is checked by the error on
the boundary of the large cylinder (Fig. 5).

The solution obtained by the MAS, applied directly to the
large cylinder (solid line in Fig. 4), and that obtained by the
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Fig. 6 RCS of a cylinder radius = 9.6λ, ϕinc = π compared
to 91 PEC cylinders radius= ai = 0.48λ

Fig. 7 Normalized RCS of a cylinder b = 9.6λ obtained by
the Cell-vertex Method based on Method of finite volumes

FVTD [11]

MAS applied to the array of small cylinders (dashed line),
agree very well, except that there are some differences due to
the distance separating these small cylinders.

The second example considers, a hand, a cylinder of radius
a = 9.6λ illuminated by a TMZ plane wave incidence angle
ϕinc = π and also an array of 91 PEC cylinders (ai = 0.48λ).
The radar cross section of these two structures is given in Fig.
7. The red curve represents the radar cross section of an array
of 91 cylinders, while the blue curve represents the radar of
the cylinder of radius 9.6λ. This solution is validated by the
result obtained in [11].

B. Optimization of the Solution

Fig. 8 Optimization of the structure given in Fig. 3

The solution obtained by an array of small cylinders can
be optimized by neglecting all the cylinders placed inside the
contour given in Fig. 3 when the distance between them is
very small compared to the length of wave λ.

The resolution of the scattering problem by an array of
cylinders system is reduced to the resolution of given by Fig.
8. For that we consider the example of the 91 cylinders studied
in the previous section. We will eliminate the cylinders placed
inside the array as shown in Fig. 9.

Fig. 9 Optimization of the structure of 91 cylinders by 51
cylinders placed in the boundary

Fig. 10 Radar cross section of a cylinder radius 9.6λ
obtained by an array of 51 cylinders illuminated by a plane

wave with incidence π

Fig. 10 represents the radar cross section of 51 cylinders
placed periodically in the boundary compared to the radar
cross section of 91 cylinders. This technique offers an
optimization and simplification of the resolution scattering
problem by large cylinder because the calculation scattering
from the small cylinder does not need an important amount of
computational resources.

C. Optimization of the MAS Solution by Minimizing the
Surface of Large Cylinder

The electromagnetic scattering fields are obtained when a
wave illuminates an obstacle. The incident wave does not
affect the surface uniformly in each point of the cylinder. In
the case of miniature object, the effect of the incident wave
is uniform but when we consider a large cylinder it is not
the case. Many experiences are tried that show that the effect
of the incident wave is very important on the surface directly
exposed to this wave.
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Fig. 11 Surface reduction method

Fig. 12 Bases of auxiliary sources for surface reduction
method

The idea in this section is minimize the number of auxiliary
sources in the formulation of the scattering problem by large
cylinder. For this reason, we propose a technique base on the
MAS which consists on applying the standard MAS only on
the half of the cylinder’s surface which is directly illuminated
by the incident plane wave. Indeed, the proposed technique
eliminates, in the formulation of the scattering problem, the
half of this object when the radius of the object is very higher
than the wave length in free space. Fig. 12 shows the idea of
this technique.

In the formulation, we consider a PEC cylinder with radius
a >> λ, parallel to (Oz) axis, and illuminated by a TMz
plane wave expressed by:

Einc
z (x, y) = E0exp {j (k0 (x cosϕinc + y sinϕinc))} ẑ

(13)
According to the MAS, an auxiliary surface is placed

parallel to the physical surface of the cylinder. Fig. 12 shows
the repartition of the auxiliary sources.

The boundary conditions applicated of the half of cylinder’s

surface is written as:

n̂× (
Einc + Escat

)
= 0 (14)

where Escat is the scattered electric field by the half of the
surface of the structure.

The scattered field is expressed on a collocation M(xm, ym)
as:

Escat(xm, ym) =

N/2∑
n=1

InH
(2)
0

[
k0

√
(xm − xn)

2
+ (ym − yn)

2

]
(15)

The incident field evaluated on the point M is written as:

Einc
m (xm, ym) = E0exp {j (k0 (xm cosϕinc + ym sinϕinc))} ẑ

(16)
So the boundary conditions can be expressed as:

N/2∑
n=1

InH
(2)
0

[
k0

√
(xm − xn)

2
+ (ym − yn)

2

]
= (17)

−E0exp {j (K0 (xm cosϕinc + ym sinϕinc))}
We obtain a linear system with N/2 unknowns:

⎡
⎢⎢⎢⎢⎣

H
(2)
0 [k0r11] · · · H

(2)
0 [k0r1(N/2)]

H
(2)
0 [k0r21] · · · H

(2)
0 [k0r2(N/2)]

...
. . .

...
H

(2)
0 [k0r(M/2)1] · · · H

(2)
0 [k0r(M/2)(N/2)]

⎤
⎥⎥⎥⎥⎦×

⎡
⎢⎢⎢⎢⎣

I1
...
...

IN/2

⎤
⎥⎥⎥⎥⎦ =

−

⎡
⎢⎢⎢⎢⎣

Einc
1
...
...

Einc
M/2

⎤
⎥⎥⎥⎥⎦

where E is the incident field vector and I is the unknown
current. In order to validate this formulation, we consider a
PEC cylinder with radius a = 9.6λ illuminated to a plane
wave TMz with incident angle π.

Fig. 13 Normalized RCS of a cylinder b = 9.6λ obtained by
the MAS with incident angle π

Fig. 13 presents the radar cross section of this cylinder
obtained with the MAS applied only to the half of this
structure. A good concordance with the result obtained in [11].

The convergence of the solution is obtained with N/2 =
93 auxiliary sources. The same solution is represented when
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we apply the MAS for all the surface of the cylinder with
N = 185 auxiliary sources. In conclusion, we have reduced
the number of auxiliary sources on its half.

V. CONCLUSION

In this paper, we have developed techniques that simplifies
the MAS in the case of the study of scattering problems by
large-size objects. Firstly, the structure is substituted by a finite
number of small cylinders. Secondly, this array of cylinders is
reduced b eliminating the interior one. In the third technique,
we propose to apply the MAS method only to the half of the
large cylinder in order to solve the scattering problem.

The simplified proposed techniques based on the MAS
reduce the computational cost and memory size needed to
simulate large-size objects gives a simplified formulation of
the standard MAS.
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