
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2342

 

 

 
Abstract—Polymorphism is one of the main pillars of object-

oriented paradigm. It induces hidden forms of class dependencies 
which may impact software quality, resulting in higher cost factor for 
comprehending, debugging, testing, and maintaining the software. In 
this paper, a new cognitive complexity metric called Cognitive 
Weighted Polymorphism Factor (CWPF) is proposed. Apart from the 
software structural complexity, it includes the cognitive complexity 
on the basis of type. The cognitive weights are calibrated based on 27 
empirical studies with 120 persons. A case study and experimentation 
of the new software metric shows positive results. Further, a 
comparative study is made and the correlation test has proved that 
CWPF complexity metric is a better, more comprehensive, and more 
realistic indicator of the software complexity than Abreu’s 
Polymorphism Factor (PF) complexity metric. 
 

Keywords—Cognitive complexity metric, cognitive weighted 
polymorphism factor, object-oriented metrics, polymorphism factor, 
software metrics.  

I. INTRODUCTION 

OLYMORPHISM is one of the main features of object-
oriented paradigm. The other salient features of object 

oriented paradigm are information hiding, inheritance, 
cohesion, and coupling between objects. The term 
‘polymorphism’ in Greek means many forms. In the object-
oriented programming, polymorphism refers to the ability of a 
programming language to process objects differently 
depending on their data type or class. More specifically, it is 
the ability to redefine or implement methods or interfaces in 
derived classes. Polymorphism has been assured to improve 
extensibility and reusability technique [1].  

The importance of polymorphism stems from the various 
benefits it offers in the software development life-cycle, to 
bring out qualitatively efficient and effective software. The 
main advantage of polymorphism is that it gives a high degree 
of freedom and decoupling because the implementation behind 
an interface is hidden from the clients. At coding time, you 
only have to worry about programming to the interface. At test 
time, you can naively substitute a mock object and validate 
your unit of code independently. At run time, you can 
dynamically supply different implementations based on 
application logic in order to achieve late binding. Another 
important benefit of polymorphism is scaling the complexity 
of the software. Polymorphism is a critical and central 
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mechanism for scaling a system's complexity, because it 
allows abstraction and economies of scale in client/server 
contracts, and also allows for the sane extension of 
functionality, because it always allows to add new 
implementations over time. Yet another advantage is due to 
parametric polymorphism. It allows a function or a data type 
to be written generically, so that it can handle different types 
of values uniformly without depending on their type. 
Parametric polymorphism is a way to make a language more 
expressive, while still maintaining full static type-safety. 

Polymorphism, based on the method binding nature, can be 
classified into 3 types. 1) Pure Polymorphism: It is achieved 
by the evocation of the same member function name with 
different signatures inside the one and the same class scope. 
The signature consists of the number, the type and the order of 
the arguments. It is equal to method overloading within a 
class. It is also called as parametric overloading. 2) Static 
Polymorphism: It is composed level polymorphism that occurs 
in class hierarchical tree. It is equivalent to method overriding. 
It is achieved by defining the member functions in different 
classes with the same name but with different signatures. 
These classes may or may not be linked by inheritance 
relations. For both pure and static polymorphisms, the method 
binding happens at the compile time. 3) Dynamic 
Polymorphism: It is also composed level polymorphism and 
equivalent to method overriding. It is achieved by defining the 
member functions in child classes with the same name and 
same signature unlike static polymorphism. It is the ability to 
use the same name and the same signature in an overridden 
method [2]. This research article focuses only on the different 
forms of polymorphism available in Java language. 

Due to the plethora of benefits, polymorphism concept is 
considered as one of the key concerns in determining the 
quality of object-oriented design [3]. However, there are some 
polymorphic forms, when used in combination with 
inheritance, can penetrate encapsulation boundaries and create 
hidden dependencies which affects the quality of the software 
[2]. Hence, there are many benefits as well as problems in the 
use of polymorphism. This calls for cautious and correct 
measure of polymorphism usage. In order to measure the 
usage of polymorphism and the software quality with respect 
to usage of polymorphism, the polymorphism metric is used. It 
measures the degree of method overriding within the class or 
in the class inheritance tree. Abreu et al. recommends the 
interval design heuristic for the polymorphic complexity. 
According to him, the polymorphism factor complexity metric 
value has to be typically kept in the middle range and 
preferably around 10%, which decreases the defect density as 
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well as rework. [4]. Thus, the use of polymorphism has to be 
in the golden threshold. When the polymorphism factor is high 
in a software system, the comprehensibility, modifiability, 
testability, and maintainability become harder and costlier. On 
the other hand, when it is very low, the reusability and 
extensibility become negligible. Hence, there is a greater need 
to measure the complexity of polymorphism more accurately.  

II. LITERATURE SURVEY 

Several software object-oriented metrics have been 
proposed in the past [5]–[10]. Only a few of the proposed 
object-oriented design metrics have focused on polymorphism. 
In particular, Abreu et al. have proposed Polymorphism Factor 
(PF) metric in their metric suite called Metrics for Object 
Oriented Design (MOOD). PF is the number of methods that 
redefine (overrides) inherited methods, divided by maximum 
number of possible distinct polymorphic situations [7]. Lorenz 
and Kidd proposed a polymorphism measure called NMO in 
their metric suite. It refers to the number of methods 
overridden by a single subclass [8]. NMO is a class-level 
metric while PF is a system-level metric, which measures the 
degree of method overriding in the whole type tree [11]. 
Benlarbi et al. proposed a set of 5 polymorphic measures 
based on the static/dynamic polymorphism forms with simple 
inheritance relationships, not including the multiple 
inheritance or friendship relations. They are overloading in 
stand-alone classes (OVO), Static Polymorphism in Ancestors 
(SPA), Static Polymorphism in Descendants (SPD), Dynamic 
Polymorphism in Ancestors (DPA), Dynamic Polymorphism 
in Descendants (DPD) [2]. Bansiya, in his QMOOD metric 
suite, proposed the polymorphic metric NOP. It is the count of 
the methods that can exhibit polymorphic behavior [10]. The 
complexity metric NOP refers to the virtual methods in C++. 
In Java, as this research article focuses only on Java language, 
all non-static methods are by default virtual functions. Only 
methods marked with the keyword final, which cannot be 
overridden, along with private methods, which are not 
inherited, are non-virtual. In the area of dynamic metrics for 
polymorphism, Dufour et al. developed as many as 17 
dynamic metrics for polymorphism using a framework for 
Java [12]. Sandhu et al. give a set of 11 dynamic metrics for 
polymorphism in object oriented system [13]. 

All the polymorphism metrics proposed have only 
considered the architectural complexity. None of them has 
dealt with cognitive complexity of polymorphism. Wang 
observed that the traditional measurements cannot actually 
reflect the real complexity of software systems in a software 
design, representation, cognition, comprehension and 
maintenance. Instead, the cognitive complexity metrics is an 
ideal measure of software functional complexities and sizes, as 
it represents the real semantic complexity by integrating both 
the operational and architectural complexities [14]. The 
cognitive complexity is defined as the mental burden on the 
user who deals with the code as developer, tester, maintainer 
etc. It is measured in terms of cognitive weights. Cognitive 
weights are defined as the extent of difficulty or relative time 
and effort required for comprehending given software, and 

measure the complexity of logical structure of software [15]. 
Only a few cognitive complexity metrics are proposed in 
object-oriented paradigm. Aloysius et al. proposed cognitive 
complexity metrics for Coupling between Object, Response 
For a Class, etc., but not for polymorphism [15], [16]. Hence, 
there is a need to propose cognitive complexity based 
polymorphism metric. 

The proposed metric CWPF is explained in Section III, the 
calibration of cognitive weights is discussed in Section IV, the 
experimentation and case study of the new metric is described 
in Section V, the comparative study of CWPF with PF is done 
in Section VI, the normalized CWPF is portrayed in Section 
VII, and Section VIII presents the conclusion and the possible 
future works.  

III. PROPOSED METRIC: COGNITIVE WEIGHTED 

POLYMORPHISM FACTOR 

Abreu et al. measure the software complexity due to the 
presence of polymorphism by dividing the actual 
polymorphism present in the system with the hypothetically 
possible maximum polymorphism potential if all the methods 
are overridden in all classes except the base ones. Here, he 
considers the polymorphism from the perspective of 
hierarchical inheritance tree. He defines the PF complexity 
metric as a quotient ranging from 0% to 100% in order to 
compare and derive conclusions among heterogeneous 
systems with different sizes, complexities, application 
domains and implementation languages [17]. In the PF 
quotient, the numerator represents actual number of methods 
that redefine the inherited method either at the compile time 
(statically) or at the run time (dynamically) and the 
denominator represents the total maximum number of possible 
different polymorphic situations in the whole software system. 
Formally, the PF complexity metric is given by (1): 

 

ܨܲ ൌ 	
∑ ெ೚ሺ஼೔ሻ
೅಴
೔సభ

∑ ሾெ೙ሺ஼೔ሻ∗஽஼ሺ஼೔ሻሿ
೅಴
೔సభ

	                              (1) 

 
where, Mo(Ci) = number of overriding methods in class Ci, 
Mn(Ci) = number of new methods defined in class Ci, DC(Ci) 
= number of children for class Ci, TC = Total number of 
Classes in the whole software system. 

The proposed Cognitive Weighted Polymorphism Factor 
attaches different cognitive weights based on the above 
mentioned three categories of polymorphism according to [2]. 
The proposed CWPF calculates not only the architectural 
complexity of the polymorphism, but also the cognitive 
complexity arising from the effort needed to comprehend 
different types of polymorphism involved in the software 
system under consideration. The formal mathematical 
definition of CWPF is given in (2): 
 

ܨܹܲܥ ൌ	
∑ ஼ௐெ೚ሺ஼೔ሻ
೅಴
೔సభ

∑ ሾெ೙ሺ஼೔ሻ∗஽஼ሺ஼೔ሻሿ∗஺஼ௐ
೅಴
೔సభ

                         (2) 

 
where, ܯܹܥ௢ሺܥ௜ሻ ൌ ௉ܰ௉ ∗ ܥ ௉ܹ௉ ൅ ௌܰ௉ ∗ ܥ ௌܹ௉ ൅	 ஽ܰ௉ ∗ ܥ ஽ܹ௉,	Mn(Ci) 
= number of overriding methods in class Ci, DC(Ci) = number 
of children for class Ci, TC = Total number of Classes. 
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ACW = (CWPP+ CWSP + CWDP) / 3 
 
where, NPP = number of pure polymorphism, NSP = number of 
static polymorphism, NDP = number of dynamic 
polymorphism, CWPP = cognitive weight of pure 
polymorphism, CWSP = cognitive weight of static 
polymorphism, CWDP = cognitive weight of dynamic 
polymorphism. 

In the numerator of (2), each type of polymorphism is 
multiplied with the corresponding cognitive weight. The 
denominator is multiplied by ACW the mean of the three 
cognitive weights. 

IV. CALIBRATION OF COGNITIVE WEIGHTS  

In this section, cognitive weights for Pure Polymorphism 
(PP), Static Polymorphism (SP), and Dynamic Polymorphism 
(DP) are calibrated separately. In order to find the cognitive 
weight factor for each of the three types of polymorphism, a 
comprehension test was conducted for three different groups 
of students to find out the time taken to understand the 
complexity of different types of polymorphism. These groups 
of students had sufficient exposure to Java programming and 
especially, in understanding various types of polymorphism. 
Around 40 students, who have scored 65% and above marks in 
Semester examination, were selected in each group. One 
undergraduate group and two postgraduate groups are called 
for the comprehension test and supplied 9 different programs 
namely, P1 to P9, three for each type of polymorphism with 
multiple choice answers. The time taken by each student to 
understand the program and to choose the best answer was 
recorded after the completion of each program. This process is 
repeated for each group of students. 

 

 

Fig. 1 Sample Individual Comprehension Time Chart 
 
To be accurate, these program comprehension tests were 

conducted online and the comprehension timings were 
registered automatically by the computer in seconds. A sample 
of the individual time taken to comprehend each of the nine 
programs from P1 to P9 is graphically shown in Fig. 1.  

The average time taken to comprehend each individual 
program from P1 to P9 by each group was calculated, so as to 
get 27 different Comprehension Mean Times (CMT). Since 3 
different groups of students have done the comprehension test 

for the same program, their values are averaged to obtain the 9 
different values in the CMT column of Table I. The tested 
programs and the corresponding CMT values are grouped into 
PP, SP, and DP categories. Then, the average of each category 
is calculated and displayed in the last column of Table I as the 
average CMT in seconds. 

In Fig. 2, which is the pictorial representation of Table I, the 
CMTs for each type of polymorphism are grouped to gather 
under the headings of Pure, Static, and Dynamic in order to 
bring out the group differences in comprehending the 
programs. The undergraduate group, represented by Group 1, 
has taken more time to comprehend than the postgraduate 
students, represented by Group 2 and Group 3. This fact is 
intuitively valid indeed, as the UG students had less exposure 
to Java than the PG students and hence more meaningful [18]. 
The average CMT for each category of polymorphism is 
displayed as value above each group of bars. 

 
TABLE I 

CALIBRATION OF COGNITIVE WEIGHTS 

Category Program # CMT (Secs) Average CMT (Secs) 

Pure 
Polymorphism 

(PP) 

P1 330.40 
 

313.06 
P2 307.05 

P3 301.73 

Static 
Polymorphism 

(SP) 

P4 556.13 
 

520.43 
P5 503.93 

P6 501.23 

Dynamic 
Polymorphism 

(DP) 

P7 720.20 
 

707.81 
P8 702.18 

P9 701.05 

 

 

Fig. 2 Categorized Cognitive Weights 
 
From Figs. 1 and 2, Table I, it is clear that the average CMT 

to understand the static polymorphism is more than the pure 
polymorphism and the time taken for the dynamic 
polymorphism is the highest. This implies that the cognitive 
load to understand the DP is greater than SP and SP is greater 
than PP. Finally, the cognitive weights are got by the MOD 
100 function and the cognitive value for PP is 3, and for the 
SP is 5, and for the DP is 7. The ratio of these values 
correspond to our natural intuitive understanding of 
difficulties and hence more meaningful and truthful [17]. 
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V.  EXPERIMENTATION AND CASE STUDY  

The proposed CWPF metric given by (2) is evaluated with 
the following case study program. The program has five 
classes. The root class has four methods. The C2 class has two 
statically overridden methods. The C3 class has two 
dynamically overridden methods and two new methods. The 
C4 and C5 classes have no methods. The UML diagram of the 
program is given in Fig. 3.  

Applying Abreu’s metric as given in (1), 
 

ܨܲ ൌ
ሺ஼ଵሻାெ೚ሺ஼ଶሻାெ೚ሺ஼ଷሻାெ೚ሺ஼ସሻାெ೚ሺ஼ହሻ

ெ೙ሺ஼ଵሻ∗ସାெ೙ሺ஼ଶሻ∗଴ାெ೙ሺ஼ଷሻ∗ଶାெ೙ሺ஼ସሻ∗଴ାெ೙ሺ஼ହሻ∗଴
  

      = (0+2+2+0+0) / (4*4 + 0 + 2*2 + 0 + 0) 
      = 4/20 or 0.20 or 20% 
 

1: /*** Case Study Program ***/ 
2: class C1 { 
3:      float v1 = 3; 
4:      void m1(int i){ } 
5:      void m2(char ch){ } 
6:      float m3(){  
7:           return 4 * v1;} 
8:      float m4(){  
9:           return v1 * v1;} 
10: } 
11: class C2 extends C1 { 
12:      void m1(float f) { } 
13:      void m2(String s) { } 
14: } 
15: class C3 extends C1 { 
16:      float m3(){  
17:           return 2 * 3.14 * v1;} 
18:      float m4(){  
19:           return v1 * v1 * v1;} 
20:      int m5(int a, int b) {  
21:           return a+b;} 
22:      int m6(int a, int b) {  
23:           return a * b;} 
24: } 
25: class C4 extends C3 {   
26: } 
27: class C5 extends C3 {   
28: } 

 

 

Fig. 3 UML Diagram of Case Study Program 
 

Applying newly proposed metric as given in (2), 

ܨܹܲܥ ൌ
ெ೚ሺ஼ଵሻାெ೚ሺ஼ଶሻ∗஼ௐೞ೛ାெ೚ሺ஼ଷሻ∗஼ௐ೏೛ାெ೚ሺ஼ସሻାெ೚ሺ஼ହሻ

൬
ெ೙ሺ஼ଵሻ∗ସାெ೙ሺ஼ଶሻ∗଴ାெ೙ሺ஼ଷሻ∗ଶ

ାெ೙ሺ஼ସሻ∗଴ାெ೙ሺ஼ହሻ∗଴
൰∗஺஼ௐ

  

 
    = (0 + 2*5 + 2*7 + 0 + 0) / ((4*4 + 0 + 2*2 + 0 + 0)*5) 
    = 24/100 or 0.24 or 24% 
 

In the CWPF calculation, each overriding is multiplied by 
the corresponding cognitive weights in the numerator and the 
denominator is multiplied by the average cognitive weight. 

VI. COMPARATIVE STUDY  

Comparative studies are done to validate complexity metric 
[19]. So, a comparative study has been made with PF 
complexity metric which is in the most widely accepted and 
empirically verified MOOD metric suite [7]. While Abreu, in 
proposing the Polymorphism Factor metric, did not provide 
the total complexity of the class by considering the cognitive 
complexity due to polymorphism in that class. This is 
precisely the difference between the PF and CWPF metrics. 
The CWPF metric is more advanced than the PF of Abreu, 
since it includes the cognitive complexity that arises due to 
various types of polymorphisms by calibrating and attaching 
the cognitive weights appropriately. The polymorphic 
cognitive weights are the effort needed by the programmer or 
the user to understand the different types of polymorphism 
embedded in the program. 

In order to compare the proposed CWPF metric with the 
already existing PF metric, a comprehension test was 
conducted to a group of students who are doing their master’s 
degree. There were forty students in the group who 
participated in the test. The students were given five different 
programs, P1 to P5, in Java for the comprehension test. The 
time taken to complete the test in seconds is captured in the 
online style, in order to maintain the accuracy. The average 
time taken to comprehend each program by all students is 
calculated and placed in Table II under the column head CMT. 
The PF and CWPF values are calculated manually for each of 
the five programs. 
 

TABLE II 
COMPLEXITY METRIC VALUES AND CMT VALUES 

Program # PF CWPF CMT (Secs) 

P1 8.3 11.7 315.2143 

P2 7.69 9.2 274.5714 

P3 12 15.2 362.8571 

P4 10.3 11.7 352.1429 

P5 9.52 9.52 259.9286 

 
The polymorphism factor complexity of the class is 

calculated by computing static polymorphism (SP), dynamic 
polymorphism (DP), and pure polymorphism (PP). This is 
better indicator than the simple PF of Abreu. The weight of 
each type of polymorphism factor is calculated by using 
cognitive weights. The weighting factor of each type is 
calculated similar to that is suggested by [14]. It is found that 
the resulting value of CWPF is larger than PF since, in PF, the 
weight of each type of polymorphism is assumed to be one. 
However, the calculation of the CWPF is more realistic 
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because it includes cognitive complexity of polymorphism. 
The obtained values of PF, CWPF and the CMT of the five 
different programs are tabulated in Table II.  

A correlation analysis was performed between PF and CMT 
and also between CWPF and CMT values. Both correlations 
were found to be positive, which means that both values of PF 
and CWPF correlates well with CMT values found in the 
empirical test conducted. The Pearson correlation r (PF, CMT) 
is 0.7146 and r (CWPF, CMT) is 0.8836. The bigger 
correlation value for CWPF than the PF concludes that CWPF 
is a better indicator of complexity of the classes with various 
types of polymorphism. This fact is further clarified clearly in 
the correlation chart given in Fig. 4. The CWPF values are 
closer to the actual mean time taken by the students to 
understand the complexity of different types of polymorphism 
in the given programs than the values of PF. Thus the 
proposed CWPF complexity metric, as it includes the 
cognitive complexity, is proved to be more robust and more 
realistic complexity metric than PF complexity metric which 
considers only the architectural complexity.  

 

 

Fig. 4 Comparison of PF and CWPF with CMT 

VII. NORMALIZED CWPF  

The calculation of the complexity values of CWPF with (2) 
is mainly meant for the comparative study with Abreu’s PF. 
Here, the complexity values for CWPF will be in the range of 
0 to 1.4. When there is no polymorphism, complexity value of 
CWPF becomes zero. When all the methods are overridden 
with pure polymorphism, the complexity value of CWPF will 
be 0.6. When all the methods are overridden with static 
polymorphism, the complexity value will be 1. When all the 
methods are overridden with dynamic polymorphism, the 
complexity value will be 1.4. Thus, the range of complexity 
values goes from 0 to 1.4. 

To make the complexity values of CWPF to lie in the range 
of 0 to 1, normalization can be done, by replacing ACW by 
Maximum Cognitive Weight (MCW) in (2), as given here. 

 
MCW = Max (CWPP, CWSP, CWDP)  

 
Then, the complexity values, when all the methods are 
overridden with PP, SP, DP, will be 0.428, 0.714, and 1 
respectively, whereas no polymorphism case will have 0 
complexity value. 

According to the normalized CWPF, the CWPF values of 

Table II will change as given in Table III. 
The corresponding graphical representation of the 

normalized complexity values of CWPF and the CMT is 
shown in Fig. 5. 

 
TABLE III 

COMPLEXITY METRIC VALUES AND CMT VALUES 

Program # CWPF CMT (Secs) 

P1 8.3 315.2143 

P2 6.6 274.5714 

P3 10.9 362.8571 

P4 8.37 352.1429 

P5 6.8 259.9286 

 

 

Fig. 5 Normalized CWPF with CMT 
 

The Pearson correlation coefficient for the PF and CMT is 
0.7146 and for CWPF and CMT is 0.8836. Hence, CWPF is 
statically proved to be the better measure than the PF measure. 
After the normalization of CWPF, the correlation coefficient 
between the CWPF and CMT is again 0.8833. Thus, the use of 
MCW adjusts the complexity values to lie in the range of 0 to 
1, while maintaining the same correlation coefficient. This 
new range of cognitive complexity values aligns the scale of 
complexity values of CWPF with that of Abreu’s complexity 
metric due to polymorphism [7]. According to him, the 
denominator represents the maximum number of possible 
distinct usage of the polymorphism and the purpose of the 
denominator is to act as normalizer for the complexity metric 
PF [20]. Therefore, it will be more apt and meaningful to 
multiply the denominator of the complexity metric CWPF 
with the maximum possible cognitive weight in order to act as 
normalizer as far as the cognitive complexity metric is 
concerned. Further, the normalized complexity metric CWPF 
becomes dimensionless satisfying one of the seven criteria of 
Abreu’s for a good object-oriented metric [7]. 

VIII. CONCLUSION AND FUTURE WORKS  

A new complexity metric called Cognitive Weighted 
Polymorphic Factor has been proposed and formulated for 
measuring the class level complexity. The polymorphism 
factor given by Abreu measures only the structural 
complexity. The cognitive weighted polymorphism factor 
captures not only the structural complexity, but also the 
cognitive complexity. The new polymorphism complexity 
metric is calibrated using series of comprehension tests and 
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found that the cognitive load for different types of 
polymorphism differ in the increasing order from pure, static, 
and dynamic. The new polymorphism complexity metric 
CWPF is more comprehensive in nature and more true to 
reality. This is proved by case study. Further, this is confirmed 
empirically by conducting a set of comprehension test and 
performing the correlation analysis that concluded saying that 
the CWPF is a better indicator of class complexity than the 
PF. The normalization of CWPF has made the complexity 
metric more robust as it becomes dimensionless, satisfying the 
Aberu’s criteria for good object-oriented metric.  

Regarding the future works, a tool has to be developed for 
calculating the CWPF value and to compare it with other 
related polymorphism complexity metrics. The newly 
proposed polymorphism complexity metric CWPF can be 
applied and studied for the other object oriented languages. In 
addition, further empirical studies can be done with software 
industry groups. 
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