
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2342


Abstract—Polymorphism is one of the main pillars of object-

oriented paradigm. It induces hidden forms of class dependencies
which may impact software quality, resulting in higher cost factor for
comprehending, debugging, testing, and maintaining the software. In
this paper, a new cognitive complexity metric called Cognitive
Weighted Polymorphism Factor (CWPF) is proposed. Apart from the
software structural complexity, it includes the cognitive complexity
on the basis of type. The cognitive weights are calibrated based on 27
empirical studies with 120 persons. A case study and experimentation
of the new software metric shows positive results. Further, a
comparative study is made and the correlation test has proved that
CWPF complexity metric is a better, more comprehensive, and more
realistic indicator of the software complexity than Abreu’s
Polymorphism Factor (PF) complexity metric.

Keywords—Cognitive complexity metric, cognitive weighted
polymorphism factor, object-oriented metrics, polymorphism factor,
software metrics.

I. INTRODUCTION

OLYMORPHISM is one of the main features of object-
oriented paradigm. The other salient features of object

oriented paradigm are information hiding, inheritance,
cohesion, and coupling between objects. The term
‘polymorphism’ in Greek means many forms. In the object-
oriented programming, polymorphism refers to the ability of a
programming language to process objects differently
depending on their data type or class. More specifically, it is
the ability to redefine or implement methods or interfaces in
derived classes. Polymorphism has been assured to improve
extensibility and reusability technique [1].

The importance of polymorphism stems from the various
benefits it offers in the software development life-cycle, to
bring out qualitatively efficient and effective software. The
main advantage of polymorphism is that it gives a high degree
of freedom and decoupling because the implementation behind
an interface is hidden from the clients. At coding time, you
only have to worry about programming to the interface. At test
time, you can naively substitute a mock object and validate
your unit of code independently. At run time, you can
dynamically supply different implementations based on
application logic in order to achieve late binding. Another
important benefit of polymorphism is scaling the complexity
of the software. Polymorphism is a critical and central

T. Francis Thamburaj, Assistant Professor and A. Aloysius, Assistant

Professor are with the Department of Computer Science, St. Joseph’s College
(Autonomous), Bharathidasan University, Thiruchchiraappalli – 620 002,
Tamil Nadu, India (Phone: +91 9442609111, +91 9443399227; e-mail:
francisthamburaj@gmail.com, aloysius1972@gmail.com).

mechanism for scaling a system's complexity, because it
allows abstraction and economies of scale in client/server
contracts, and also allows for the sane extension of
functionality, because it always allows to add new
implementations over time. Yet another advantage is due to
parametric polymorphism. It allows a function or a data type
to be written generically, so that it can handle different types
of values uniformly without depending on their type.
Parametric polymorphism is a way to make a language more
expressive, while still maintaining full static type-safety.

Polymorphism, based on the method binding nature, can be
classified into 3 types. 1) Pure Polymorphism: It is achieved
by the evocation of the same member function name with
different signatures inside the one and the same class scope.
The signature consists of the number, the type and the order of
the arguments. It is equal to method overloading within a
class. It is also called as parametric overloading. 2) Static
Polymorphism: It is composed level polymorphism that occurs
in class hierarchical tree. It is equivalent to method overriding.
It is achieved by defining the member functions in different
classes with the same name but with different signatures.
These classes may or may not be linked by inheritance
relations. For both pure and static polymorphisms, the method
binding happens at the compile time. 3) Dynamic
Polymorphism: It is also composed level polymorphism and
equivalent to method overriding. It is achieved by defining the
member functions in child classes with the same name and
same signature unlike static polymorphism. It is the ability to
use the same name and the same signature in an overridden
method [2]. This research article focuses only on the different
forms of polymorphism available in Java language.

Due to the plethora of benefits, polymorphism concept is
considered as one of the key concerns in determining the
quality of object-oriented design [3]. However, there are some
polymorphic forms, when used in combination with
inheritance, can penetrate encapsulation boundaries and create
hidden dependencies which affects the quality of the software
[2]. Hence, there are many benefits as well as problems in the
use of polymorphism. This calls for cautious and correct
measure of polymorphism usage. In order to measure the
usage of polymorphism and the software quality with respect
to usage of polymorphism, the polymorphism metric is used. It
measures the degree of method overriding within the class or
in the class inheritance tree. Abreu et al. recommends the
interval design heuristic for the polymorphic complexity.
According to him, the polymorphism factor complexity metric
value has to be typically kept in the middle range and
preferably around 10%, which decreases the defect density as

Cognitive Weighted Polymorphism Factor:
A Comprehension Augmented Complexity Metric

T. Francis Thamburaj, A. Aloysius

P

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2343

well as rework. [4]. Thus, the use of polymorphism has to be
in the golden threshold. When the polymorphism factor is high
in a software system, the comprehensibility, modifiability,
testability, and maintainability become harder and costlier. On
the other hand, when it is very low, the reusability and
extensibility become negligible. Hence, there is a greater need
to measure the complexity of polymorphism more accurately.

II. LITERATURE SURVEY

Several software object-oriented metrics have been
proposed in the past [5]–[10]. Only a few of the proposed
object-oriented design metrics have focused on polymorphism.
In particular, Abreu et al. have proposed Polymorphism Factor
(PF) metric in their metric suite called Metrics for Object
Oriented Design (MOOD). PF is the number of methods that
redefine (overrides) inherited methods, divided by maximum
number of possible distinct polymorphic situations [7]. Lorenz
and Kidd proposed a polymorphism measure called NMO in
their metric suite. It refers to the number of methods
overridden by a single subclass [8]. NMO is a class-level
metric while PF is a system-level metric, which measures the
degree of method overriding in the whole type tree [11].
Benlarbi et al. proposed a set of 5 polymorphic measures
based on the static/dynamic polymorphism forms with simple
inheritance relationships, not including the multiple
inheritance or friendship relations. They are overloading in
stand-alone classes (OVO), Static Polymorphism in Ancestors
(SPA), Static Polymorphism in Descendants (SPD), Dynamic
Polymorphism in Ancestors (DPA), Dynamic Polymorphism
in Descendants (DPD) [2]. Bansiya, in his QMOOD metric
suite, proposed the polymorphic metric NOP. It is the count of
the methods that can exhibit polymorphic behavior [10]. The
complexity metric NOP refers to the virtual methods in C++.
In Java, as this research article focuses only on Java language,
all non-static methods are by default virtual functions. Only
methods marked with the keyword final, which cannot be
overridden, along with private methods, which are not
inherited, are non-virtual. In the area of dynamic metrics for
polymorphism, Dufour et al. developed as many as 17
dynamic metrics for polymorphism using a framework for
Java [12]. Sandhu et al. give a set of 11 dynamic metrics for
polymorphism in object oriented system [13].

All the polymorphism metrics proposed have only
considered the architectural complexity. None of them has
dealt with cognitive complexity of polymorphism. Wang
observed that the traditional measurements cannot actually
reflect the real complexity of software systems in a software
design, representation, cognition, comprehension and
maintenance. Instead, the cognitive complexity metrics is an
ideal measure of software functional complexities and sizes, as
it represents the real semantic complexity by integrating both
the operational and architectural complexities [14]. The
cognitive complexity is defined as the mental burden on the
user who deals with the code as developer, tester, maintainer
etc. It is measured in terms of cognitive weights. Cognitive
weights are defined as the extent of difficulty or relative time
and effort required for comprehending given software, and

measure the complexity of logical structure of software [15].
Only a few cognitive complexity metrics are proposed in
object-oriented paradigm. Aloysius et al. proposed cognitive
complexity metrics for Coupling between Object, Response
For a Class, etc., but not for polymorphism [15], [16]. Hence,
there is a need to propose cognitive complexity based
polymorphism metric.

The proposed metric CWPF is explained in Section III, the
calibration of cognitive weights is discussed in Section IV, the
experimentation and case study of the new metric is described
in Section V, the comparative study of CWPF with PF is done
in Section VI, the normalized CWPF is portrayed in Section
VII, and Section VIII presents the conclusion and the possible
future works.

III. PROPOSED METRIC: COGNITIVE WEIGHTED

POLYMORPHISM FACTOR

Abreu et al. measure the software complexity due to the
presence of polymorphism by dividing the actual
polymorphism present in the system with the hypothetically
possible maximum polymorphism potential if all the methods
are overridden in all classes except the base ones. Here, he
considers the polymorphism from the perspective of
hierarchical inheritance tree. He defines the PF complexity
metric as a quotient ranging from 0% to 100% in order to
compare and derive conclusions among heterogeneous
systems with different sizes, complexities, application
domains and implementation languages [17]. In the PF
quotient, the numerator represents actual number of methods
that redefine the inherited method either at the compile time
(statically) or at the run time (dynamically) and the
denominator represents the total maximum number of possible
different polymorphic situations in the whole software system.
Formally, the PF complexity metric is given by (1):

ܨܲ ൌ 	
∑ ெ೚ሺ஼೔ሻ
೅಴
೔సభ

∑ ሾெ೙ሺ஼೔ሻ∗஽஼ሺ஼೔ሻሿ
೅಴
೔సభ

	 (1)

where, Mo(Ci) = number of overriding methods in class Ci,
Mn(Ci) = number of new methods defined in class Ci, DC(Ci)
= number of children for class Ci, TC = Total number of
Classes in the whole software system.

The proposed Cognitive Weighted Polymorphism Factor
attaches different cognitive weights based on the above
mentioned three categories of polymorphism according to [2].
The proposed CWPF calculates not only the architectural
complexity of the polymorphism, but also the cognitive
complexity arising from the effort needed to comprehend
different types of polymorphism involved in the software
system under consideration. The formal mathematical
definition of CWPF is given in (2):

ܨܹܲܥ ൌ	
∑ ஼ௐெ೚ሺ஼೔ሻ
೅಴
೔సభ

∑ ሾெ೙ሺ஼೔ሻ∗஽஼ሺ஼೔ሻሿ∗஺஼ௐ
೅಴
೔సభ

 (2)

where, ܯܹܥ௢ሺܥ௜ሻ ൌ ௉ܰ௉ ∗ ܥ ௉ܹ௉ ൅ ௌܰ௉ ∗ ܥ ௌܹ௉ ൅	 ஽ܰ௉ ∗ ܥ ஽ܹ௉,	Mn(Ci)
= number of overriding methods in class Ci, DC(Ci) = number
of children for class Ci, TC = Total number of Classes.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2344

ACW = (CWPP+ CWSP + CWDP) / 3

where, NPP = number of pure polymorphism, NSP = number of
static polymorphism, NDP = number of dynamic
polymorphism, CWPP = cognitive weight of pure
polymorphism, CWSP = cognitive weight of static
polymorphism, CWDP = cognitive weight of dynamic
polymorphism.

In the numerator of (2), each type of polymorphism is
multiplied with the corresponding cognitive weight. The
denominator is multiplied by ACW the mean of the three
cognitive weights.

IV. CALIBRATION OF COGNITIVE WEIGHTS

In this section, cognitive weights for Pure Polymorphism
(PP), Static Polymorphism (SP), and Dynamic Polymorphism
(DP) are calibrated separately. In order to find the cognitive
weight factor for each of the three types of polymorphism, a
comprehension test was conducted for three different groups
of students to find out the time taken to understand the
complexity of different types of polymorphism. These groups
of students had sufficient exposure to Java programming and
especially, in understanding various types of polymorphism.
Around 40 students, who have scored 65% and above marks in
Semester examination, were selected in each group. One
undergraduate group and two postgraduate groups are called
for the comprehension test and supplied 9 different programs
namely, P1 to P9, three for each type of polymorphism with
multiple choice answers. The time taken by each student to
understand the program and to choose the best answer was
recorded after the completion of each program. This process is
repeated for each group of students.

Fig. 1 Sample Individual Comprehension Time Chart

To be accurate, these program comprehension tests were

conducted online and the comprehension timings were
registered automatically by the computer in seconds. A sample
of the individual time taken to comprehend each of the nine
programs from P1 to P9 is graphically shown in Fig. 1.

The average time taken to comprehend each individual
program from P1 to P9 by each group was calculated, so as to
get 27 different Comprehension Mean Times (CMT). Since 3
different groups of students have done the comprehension test

for the same program, their values are averaged to obtain the 9
different values in the CMT column of Table I. The tested
programs and the corresponding CMT values are grouped into
PP, SP, and DP categories. Then, the average of each category
is calculated and displayed in the last column of Table I as the
average CMT in seconds.

In Fig. 2, which is the pictorial representation of Table I, the
CMTs for each type of polymorphism are grouped to gather
under the headings of Pure, Static, and Dynamic in order to
bring out the group differences in comprehending the
programs. The undergraduate group, represented by Group 1,
has taken more time to comprehend than the postgraduate
students, represented by Group 2 and Group 3. This fact is
intuitively valid indeed, as the UG students had less exposure
to Java than the PG students and hence more meaningful [18].
The average CMT for each category of polymorphism is
displayed as value above each group of bars.

TABLE I

CALIBRATION OF COGNITIVE WEIGHTS

Category Program # CMT (Secs) Average CMT (Secs)

Pure
Polymorphism

(PP)

P1 330.40

313.06
P2 307.05

P3 301.73

Static
Polymorphism

(SP)

P4 556.13

520.43
P5 503.93

P6 501.23

Dynamic
Polymorphism

(DP)

P7 720.20

707.81
P8 702.18

P9 701.05

Fig. 2 Categorized Cognitive Weights

From Figs. 1 and 2, Table I, it is clear that the average CMT

to understand the static polymorphism is more than the pure
polymorphism and the time taken for the dynamic
polymorphism is the highest. This implies that the cognitive
load to understand the DP is greater than SP and SP is greater
than PP. Finally, the cognitive weights are got by the MOD
100 function and the cognitive value for PP is 3, and for the
SP is 5, and for the DP is 7. The ratio of these values
correspond to our natural intuitive understanding of
difficulties and hence more meaningful and truthful [17].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2345

V. EXPERIMENTATION AND CASE STUDY

The proposed CWPF metric given by (2) is evaluated with
the following case study program. The program has five
classes. The root class has four methods. The C2 class has two
statically overridden methods. The C3 class has two
dynamically overridden methods and two new methods. The
C4 and C5 classes have no methods. The UML diagram of the
program is given in Fig. 3.

Applying Abreu’s metric as given in (1),

ܨܲ ൌ
ሺ஼ଵሻାெ೚ሺ஼ଶሻାெ೚ሺ஼ଷሻାெ೚ሺ஼ସሻାெ೚ሺ஼ହሻ

ெ೙ሺ஼ଵሻ∗ସାெ೙ሺ஼ଶሻ∗଴ାெ೙ሺ஼ଷሻ∗ଶାெ೙ሺ஼ସሻ∗଴ାெ೙ሺ஼ହሻ∗଴

 = (0+2+2+0+0) / (4*4 + 0 + 2*2 + 0 + 0)
 = 4/20 or 0.20 or 20%

1: /*** Case Study Program ***/
2: class C1 {
3: float v1 = 3;
4: void m1(int i){ }
5: void m2(char ch){ }
6: float m3(){
7: return 4 * v1;}
8: float m4(){
9: return v1 * v1;}
10: }
11: class C2 extends C1 {
12: void m1(float f) { }
13: void m2(String s) { }
14: }
15: class C3 extends C1 {
16: float m3(){
17: return 2 * 3.14 * v1;}
18: float m4(){
19: return v1 * v1 * v1;}
20: int m5(int a, int b) {
21: return a+b;}
22: int m6(int a, int b) {
23: return a * b;}
24: }
25: class C4 extends C3 {
26: }
27: class C5 extends C3 {
28: }

Fig. 3 UML Diagram of Case Study Program

Applying newly proposed metric as given in (2),

ܨܹܲܥ ൌ
ெ೚ሺ஼ଵሻାெ೚ሺ஼ଶሻ∗஼ௐೞ೛ାெ೚ሺ஼ଷሻ∗஼ௐ೏೛ାெ೚ሺ஼ସሻାெ೚ሺ஼ହሻ

൬
ெ೙ሺ஼ଵሻ∗ସାெ೙ሺ஼ଶሻ∗଴ାெ೙ሺ஼ଷሻ∗ଶ

ାெ೙ሺ஼ସሻ∗଴ାெ೙ሺ஼ହሻ∗଴
൰∗஺஼ௐ

 = (0 + 2*5 + 2*7 + 0 + 0) / ((4*4 + 0 + 2*2 + 0 + 0)*5)
 = 24/100 or 0.24 or 24%

In the CWPF calculation, each overriding is multiplied by
the corresponding cognitive weights in the numerator and the
denominator is multiplied by the average cognitive weight.

VI. COMPARATIVE STUDY

Comparative studies are done to validate complexity metric
[19]. So, a comparative study has been made with PF
complexity metric which is in the most widely accepted and
empirically verified MOOD metric suite [7]. While Abreu, in
proposing the Polymorphism Factor metric, did not provide
the total complexity of the class by considering the cognitive
complexity due to polymorphism in that class. This is
precisely the difference between the PF and CWPF metrics.
The CWPF metric is more advanced than the PF of Abreu,
since it includes the cognitive complexity that arises due to
various types of polymorphisms by calibrating and attaching
the cognitive weights appropriately. The polymorphic
cognitive weights are the effort needed by the programmer or
the user to understand the different types of polymorphism
embedded in the program.

In order to compare the proposed CWPF metric with the
already existing PF metric, a comprehension test was
conducted to a group of students who are doing their master’s
degree. There were forty students in the group who
participated in the test. The students were given five different
programs, P1 to P5, in Java for the comprehension test. The
time taken to complete the test in seconds is captured in the
online style, in order to maintain the accuracy. The average
time taken to comprehend each program by all students is
calculated and placed in Table II under the column head CMT.
The PF and CWPF values are calculated manually for each of
the five programs.

TABLE II
COMPLEXITY METRIC VALUES AND CMT VALUES

Program # PF CWPF CMT (Secs)

P1 8.3 11.7 315.2143

P2 7.69 9.2 274.5714

P3 12 15.2 362.8571

P4 10.3 11.7 352.1429

P5 9.52 9.52 259.9286

The polymorphism factor complexity of the class is

calculated by computing static polymorphism (SP), dynamic
polymorphism (DP), and pure polymorphism (PP). This is
better indicator than the simple PF of Abreu. The weight of
each type of polymorphism factor is calculated by using
cognitive weights. The weighting factor of each type is
calculated similar to that is suggested by [14]. It is found that
the resulting value of CWPF is larger than PF since, in PF, the
weight of each type of polymorphism is assumed to be one.
However, the calculation of the CWPF is more realistic

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2346

because it includes cognitive complexity of polymorphism.
The obtained values of PF, CWPF and the CMT of the five
different programs are tabulated in Table II.

A correlation analysis was performed between PF and CMT
and also between CWPF and CMT values. Both correlations
were found to be positive, which means that both values of PF
and CWPF correlates well with CMT values found in the
empirical test conducted. The Pearson correlation r (PF, CMT)
is 0.7146 and r (CWPF, CMT) is 0.8836. The bigger
correlation value for CWPF than the PF concludes that CWPF
is a better indicator of complexity of the classes with various
types of polymorphism. This fact is further clarified clearly in
the correlation chart given in Fig. 4. The CWPF values are
closer to the actual mean time taken by the students to
understand the complexity of different types of polymorphism
in the given programs than the values of PF. Thus the
proposed CWPF complexity metric, as it includes the
cognitive complexity, is proved to be more robust and more
realistic complexity metric than PF complexity metric which
considers only the architectural complexity.

Fig. 4 Comparison of PF and CWPF with CMT

VII. NORMALIZED CWPF

The calculation of the complexity values of CWPF with (2)
is mainly meant for the comparative study with Abreu’s PF.
Here, the complexity values for CWPF will be in the range of
0 to 1.4. When there is no polymorphism, complexity value of
CWPF becomes zero. When all the methods are overridden
with pure polymorphism, the complexity value of CWPF will
be 0.6. When all the methods are overridden with static
polymorphism, the complexity value will be 1. When all the
methods are overridden with dynamic polymorphism, the
complexity value will be 1.4. Thus, the range of complexity
values goes from 0 to 1.4.

To make the complexity values of CWPF to lie in the range
of 0 to 1, normalization can be done, by replacing ACW by
Maximum Cognitive Weight (MCW) in (2), as given here.

MCW = Max (CWPP, CWSP, CWDP)

Then, the complexity values, when all the methods are
overridden with PP, SP, DP, will be 0.428, 0.714, and 1
respectively, whereas no polymorphism case will have 0
complexity value.

According to the normalized CWPF, the CWPF values of

Table II will change as given in Table III.
The corresponding graphical representation of the

normalized complexity values of CWPF and the CMT is
shown in Fig. 5.

TABLE III

COMPLEXITY METRIC VALUES AND CMT VALUES

Program # CWPF CMT (Secs)

P1 8.3 315.2143

P2 6.6 274.5714

P3 10.9 362.8571

P4 8.37 352.1429

P5 6.8 259.9286

Fig. 5 Normalized CWPF with CMT

The Pearson correlation coefficient for the PF and CMT is
0.7146 and for CWPF and CMT is 0.8836. Hence, CWPF is
statically proved to be the better measure than the PF measure.
After the normalization of CWPF, the correlation coefficient
between the CWPF and CMT is again 0.8833. Thus, the use of
MCW adjusts the complexity values to lie in the range of 0 to
1, while maintaining the same correlation coefficient. This
new range of cognitive complexity values aligns the scale of
complexity values of CWPF with that of Abreu’s complexity
metric due to polymorphism [7]. According to him, the
denominator represents the maximum number of possible
distinct usage of the polymorphism and the purpose of the
denominator is to act as normalizer for the complexity metric
PF [20]. Therefore, it will be more apt and meaningful to
multiply the denominator of the complexity metric CWPF
with the maximum possible cognitive weight in order to act as
normalizer as far as the cognitive complexity metric is
concerned. Further, the normalized complexity metric CWPF
becomes dimensionless satisfying one of the seven criteria of
Abreu’s for a good object-oriented metric [7].

VIII. CONCLUSION AND FUTURE WORKS

A new complexity metric called Cognitive Weighted
Polymorphic Factor has been proposed and formulated for
measuring the class level complexity. The polymorphism
factor given by Abreu measures only the structural
complexity. The cognitive weighted polymorphism factor
captures not only the structural complexity, but also the
cognitive complexity. The new polymorphism complexity
metric is calibrated using series of comprehension tests and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2347

found that the cognitive load for different types of
polymorphism differ in the increasing order from pure, static,
and dynamic. The new polymorphism complexity metric
CWPF is more comprehensive in nature and more true to
reality. This is proved by case study. Further, this is confirmed
empirically by conducting a set of comprehension test and
performing the correlation analysis that concluded saying that
the CWPF is a better indicator of class complexity than the
PF. The normalization of CWPF has made the complexity
metric more robust as it becomes dimensionless, satisfying the
Aberu’s criteria for good object-oriented metric.

Regarding the future works, a tool has to be developed for
calculating the CWPF value and to compare it with other
related polymorphism complexity metrics. The newly
proposed polymorphism complexity metric CWPF can be
applied and studied for the other object oriented languages. In
addition, further empirical studies can be done with software
industry groups.

REFERENCES
[1] T. G. Mayer, T. Hall, “Measuring OO systems: a critical analysis of the

MOOD metrics,” Tools 29, (Procs. Technology of OO Languages &
Systems, Europe’ 99), R. Mitchell, A. C. Wills, J. Bosch, B. Meyer
(Eds.): Los Alamitos, Ca., USA, IEEE Computer Society, pp. 108–117,
1999.

[2] S. Benlarbi, and W. L. Melo, “Polymorphism measures for early risk
prediction,” IEEE Software Engineering, 1999. Proceedings of the 1999
International Conference, pp. 334-344, 1999.

[3] C. Pons, L. Olsina, and M. Prieto, “A formal mechanism for assessing
polymorphism in object-oriented systems,” In Quality Software, 2000.
Proceedings. First Asia-Pacific Conference on, pp. 53-62. IEEE, 2000.

[4] F. B. Abreu, and W. L. Melo, “Evaluating the impact of object-oriented
design on software quality,” Proceedings of the 3rd International
Software Metrics Symposium (METRICS'96), IEEE, Berlin, Germany,
March, 1996.

[5] S. R. Chidamber, C. F. Kemerer, “Towards a metrics suite for object-
oriented design,” Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), vol. 26, pp. 197–211, 1991.

[6] L. Wei, and H. Sallie, “Object-oriented metrics that predict
maintainability,” Journal of systems and software, vol. 23, no. 2, pp.
111-122, 1993.

[7] F. B. Abreu, and R. Carapuça., “Object-oriented software engineering:
Measuring and controlling the development process,” Proceedings of the
4th international conference on software quality. vol. 186, pp. 1-8, 1994.

[8] M. Lorenz, and J. Kidd, “Object oriented software metrics,” Prentice
Hall Object-Oriented Series, Englewood Cliffs, N.J., USA, 1994.

[9] L. H. Rosenberg, and L. E. Hyatt, “Software quality metrics for object-
oriented environments,” Crosstalk journal, vol. 10, no. 4, pp. 1-16, 1997.

[10] J. Bansiya, and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on Software
Engineering,” vol. 28, no. 1, pp. 4-17, 2002.

[11] D. Wu, L. Chen, Y. Zhou, and B. Xu. “A metrics-based comparative
study on object-oriented programming languages,” 2015.

[12] Dufour, Bruno, Karel Driesen, Laurie Hendren, and Clark Verbrugge.
“Dynamic metrics for Java,” In ACM SIGPLAN Notices, vol. 38, no.
11, pp. 149-168. ACM, 2003.

[13] P. S. Sandhu, and G. Singh, “Dynamic metrics for polymorphism in
object oriented systems,” World Academy of Science, Engineering and
Technology, vol. 2, pp. 03-27, 2008.

[14] Y. Wang, and J. Shao, “Measurement of the cognitive functional
complexity of software,” Proc. Second IEEE Int. Conf. Cognitive
Informatics (ICCI’03), pp. 1-6, 2003.

[15] A. Aloysius, and L. Arockiam, “Cognitive weighted response for a class:
A new metric for measuring cognitive complexity of object oriented
systems,” International Journal of Advanced Research in Computer
Science, vol. 3, no. 4, 2012.

[16] A. Aloysisus, and L. Arockiam, “Coupling complexity metric: A
cognitive approach,” International Journal of Information Technology
and Computer Science, vol. 4, no. 9, pp. 29-35, 2012,

[17] F. B. Abreu et al, “The Design of Eiffel Programs: Quantitative
Evaluation Using the MOOD Metrics,” Proceedings of TOOLS'96,
California, Jul. 1996.

[18] N. E. Fenton, and J. Bieman, “Software metrics: A rigorous and
practical approach,” 3rd edition. CRC Press, ISBN: 9781439838228, pp.
54, November 2014.

[19] F. Thamburaj, “Validation of cognitive weighted method hiding factor
complexity metric,” in International Conference on Advanced
Computing (ICAC 2015), International Journal of Applied Engineering
Research (IJAER), accepted for publication.

[20] F. B. Abreu, M. Goulao, and R. Estevers, “Toward the design quality
evaluation of object-oriented software systems,” Proceedings of the 5th
International Conference on Software Quality, Austin, Texas, USA, pp.
44-57. 1995.

T. Francis Thamburaj is working as Assistant Professor in
Department of Computer Science, St. Joseph’s College,
Trichy, Tamil Nadu, India. He has obtained the Master of
Computer Applications degree in 1987 and Master of
Philosophy degree in 2001 from Bharathidasan University,
Trichy. He has 25 years of experience in teaching Computer
Science. He is the founder of Computer Science Department

in Loyola College, Chennai, in 1993, and Information Technology
Department in St. Joseph’s College, Trichy, in 2006. His research areas are
Artificial Neural Networks and Software Metrics. He has published many
research articles in the National / International conferences, and journals.
Notably, he has presented, in 2011, a research paper in the World Congress in
Computer Science, Computer Engineering, and Applied Computing
(WORLDCOMP’11), Las Vegas, USA. A list of his research articles can be
found in Google Scholar website. He is currently pursuing Doctor of
Philosophy program and his current area of research is Cognitive Aspects of
Object Oriented Software Metrics.

A. Aloysius is working as Assistant Professor in Department
of Computer Science, St. Joseph’s College, Trichy, Tamil
Nadu, India. He has got the Master of Computer Science
degree in 1996, Master of Philosophy degree in 2004, and
Doctor of Philosophy in Computer Science degree in 2013
from Bharathidasan University, Trichy. He has 15 years of
experience in teaching and research. He has published many

research articles in the National/ International conferences and journals. He
has also presented 2 research articles in the International Conferences on
Computational Intelligence and Cognitive Informatics in Indonesia. He has
acted as a chair person for many national and international conferences. His
current area of research is Cognitive Aspects in Software Design.

