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Abstract—Lateral torsional buckling is a global buckling mode 

which should be considered in design of slender structural members 

under flexure about their strong axis. It is possible to compute the 

load which causes lateral torsional buckling of a beam by finite 

element analysis, however, closed form equations are needed in 

engineering practice for calculation ease which can be obtained by 

using energy method. In lateral torsional buckling applications of 

energy method, a proper function for the critical lateral torsional 

buckling mode should be chosen which can be thought as the 

variation of twisting angle along the buckled beam. Accuracy of the 

results depends on how close is the chosen function to the exact 

mode. Since critical lateral torsional buckling mode of the cantilever 

I-beams varies due to material properties, section properties and 

loading case, the hardest step is to determine a proper mode function 

in application of energy method. 

This paper presents an approximate function for critical lateral 

torsional buckling mode of doubly symmetric cantilever I-beams. 

Coefficient matrices are calculated for concentrated load at free end, 

uniformly distributed load and constant moment along the beam 

cases. Critical lateral torsional buckling modes obtained by presented 

function and exact solutions are compared. It is found that the modes 

obtained by presented function coincide with differential equation 

solutions for considered loading cases. 

 

Keywords—Buckling mode, cantilever, lateral-torsional 

buckling, I-beam. 

I. INTRODUCTION 

ATERAL TORSIONAL BUCKLING (LTB) is a global 

buckling mode of slender structural members in which the 

beam experiences non uniform twisting and buckling about its 

weak axis. There are three main methods to obtain critical 

LTB load of beams, which is defined as the smallest load that 

causes LTB. First one is the solution of equilibrium equation 

of LTB [1]. It should be remembered that equilibrium equation 

of LTB is only valid if the load is acting at the shear center of 

the section. Solution of the mentioned equation usually 

involves numerical methods which cannot be applied easily 

without a mathematical software [2]. The second one is finite 

element analysis (FEA). In FEA, structural member, boundary 

conditions and loading case should be modeled properly and 

solved with a FEA software. These two methods are not 

practical and require programming and finite element 

modeling skills. The last one, which is the concern of this 

study, is energy method. Although application of energy 

method is not practical itself, the main motivation to use this 

method in LTB problems is that closed form and/or parametric 

equations can be presented [3]. 
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By energy method, critical LTB load can be calculated by 

equalizing the work done by internal and external forces at 

critical state. Instead of considering all work terms, it is 

sufficient to take into consideration the works of twisting. For 

a doubly symmetric cantilever I-beam which is loaded from its 

shear center, (1) can be written at the moment of instability 

[4]. 
 ��� ��� ��	�
�� �
�� + ��� ��� ���	�
��� �
�� = ��� ���	����� �
��    (1) 

 

In (1), � is cantilever length, � is elasticity modulus, � is 

shear modulus, �� is torsional constant, �� is warping 

coefficient, �� is moment of inertia about weak axis, �� is 

bending moment about strong axis, 
 is the distance from fixed 

end, and finally   is the twisting angle. 

The left side of (1) includes work terms of internal forces. 

The first and second terms are the works done by torsion and 

warping, respectively. The only term at the right side of (1) is 

for the work done by the bending moment component about 

weak axis. 

As all methods do, energy method has a drawback. In 

energy method, a function should be chosen which is in the 

form of the considered deformation along the member [3]. 

Twisting angle along the buckled beam is the considered 

deformation for LTB. 

Since the ratio of twisting angle to LTB mode is constant at 

any point on the span of the buckled beam, twisting angle ( ) 

introduced in (1) can be safely replaced with LTB mode. Then 

critical LTB load of the beam can be calculated. The point is, 

there are more than one LTB mode of a beam. Each one leads 

to a different buckling load. The LTB mode that leads to 

smallest LTB load, which is called critical LTB mode, should 

be used in energy equations. 

Better results are obtained by energy method if a function is 

chosen which matches the exact critical LTB mode. 

Otherwise, results obtained by energy method diverge from 

exact solution. A simple function which can take the form of 

critical LTB mode of cantilever I-beams for any loading case 

is not encountered in the literature. Besides, such function 

does not seem to be exist. Related to LTB of steel beams, 

Hodges and Peters investigated the LTB of cantilever strip and 

I-beams. They proposed an approximate function for the 

elastic critical LTB mode of a cantilever I-beam which is 

subjected to a concentrated load acting at its free end [5]. 

Andrade and Camotim presented an approach to LTB analysis 

of doubly symmetric prismatic and tapered thin-walled beams. 

[6]. Andrade and Camotim introduced a general formulation 
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for the elastic LTB behavior of singly symmetric thin-walled 

tapered beams [7]. Andrade et al. extended the application 

domain of 3-factor formula, which is commonly employed to 

determine elastic LTB loads of beams, to I-section cantilever 

beams [8]. Andrade et al. discussed the difference in LTB 

loads between 1D model and shell FEA [9]. Challamel and 

Wang presented exact stability criteria for LTB of cantilever 

strip beams and introduced closed-form solutions in terms of 

Bessel functions. They underlined that no such solution is 

obtained for cantilever I-beams by that moment [10]. 

Goncalves presented a geometrically exact beam formulation 

and finite element implementation, aiming at calculating LTB 

loads of thin-walled beams with deformable cross-section [11]. 

Benyamina et al. investigated the elastic LTB behavior of 

doubly symmetric web-tapered thin-walled I-beams and 

proposed an accurate analytical formula to calculate LTB 

loads in function of stiffness terms, load height position and 

tapering parameter [12]. Ozbasaran presented a parametric 

formula to calculate elastic critical LTB loads of European 

IPN and IPE section cantilever beams [13]. Recently, Sonck 

and Belis investigated the lateral–torsional buckling behavior 

of cellular beams [14]. Ibrahim et al. studied the inelastic LTB 

of coped beams with simply supported ends experimentally 

[15]. Kucukler et al. presented a stiffness reduction approach 

for the LTB assessment of steel beams [16]. Nguyen et al. 

introduced a design procedure for elastic LTB of PFRP beams 

[17]. 

This paper presents a function for critical LTB mode of 

doubly symmetric cantilever I-beams in bivariate polynomial 

form. Coefficient matrices of the polynomial are calculated for 

three simple loading cases; Concentrated load at free end, 

uniformly distributed load and constant moment along the 

beam. Results obtained by presented function are compared to 

exact numerical solutions. 

II.  METHOD 

Let us consider a doubly symmetric cantilever I-beam with 

a concentrated load acting at its free end. By assuming vertical 

load position is at shear center, (2) can be written [1]. 

 �!	�
! " ##$ ��	�
� " %���&
�����#$  = 0                          (2) 

 

In (2), ( = ��� is the torsional rigidity of the section. (� = ��� is the warping rigidity of the section and ) is the 

magnitude of the concentrated load. Solution of   is 

dependent to a dimensionless slenderness which is given in 

(3): 
 * = ��##$                                                 (3) 

 

Although dependence of   to * and loading case is known, 

yet a closed form solution of   which includes * and loading 

case parameters is not encountered in literature. To visualize 

variation of twisting angle related to *, three-dimensional 

plots are used. The solution is performed by finite differences 

method with a precision of 100 finite elements for each beam 

[2], [4]. First, critical LTB load of the beam is determined by 

solving the eigenvalue problem. Then, critical LTB mode of 

the beam is obtained numerically by substituting critical LTB 

load into node equilibrium equations. 

Fig. 1 presents the variation of critical LTB mode of a 

cantilever I-beam subjected to a concentrated load acting at its 

free end for the * values between 0.1 and 150. 

 

 

Fig. 1 Critical LTB mode surface for concentrated load at free end 

case 

 

In Fig. 1,  �
� is the twisting angle at point 
,  � is the 

twisting angle at free end.  �
�/ � is the relative twisting 

angle at point 
. * is the dimensionless slenderness introduced 

in (3). Finally, 
/� is the relative position on the beam length 

which is 0 at fixed end and 1 at free end. 

The three dimensional plot given in Fig. 1 (in further text: 

critical LTB mode surface) can be represented by a bivariate 

polynomial as (4): 

  �
�/ � = �∑ ∑ -./*.&� �
��/&�0/1�0.1�                 (4) 

 -./ terms for the values of 2 and 3 from 1 to 4 produce a matrix 

which is called “coefficient matrix” in the further text. For 

each loading case, a different coefficient matrix is found. 

The degree of the bivariate polynomial is limited to 4 = 4. 

If a higher degree polynomial template is used, accuracy 

increases as expected. However, a proper template should be 

constructed for optimal function complexity and precision. 

The coefficient matrix, which is composed of 16 members, for 

concentrated load at free end case is as; 
 

-% = 10&7 8 "156.30 3013.06 16823.90 "9839.09"23.61 531.94 "435.69 "85.542.38 ∗ 10&� "4.76 1.86 2.84"7.89 ∗ 10&B 1.53 ∗ 10&� "2.80 ∗ 10&C "1.23 ∗ 10&�D(5) 

 

Coefficient matrix given in (5) is calculated by fitting the 

bivariate polynomial given in (4) to numerical data. 

By following the same steps, critical LTB mode surface and 

coefficient matrix of any loading case can be obtained. 

Differential equation of LTB for uniformly distributed load 

along the beam case [2], [4] is given in (6): 

 �!	�
! " ##$ ��	�
� " E���&
�!B���#$  = 0                         (6) 
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In (6), F is magnitude of uniformly distributed load. Critical 

LTB mode surface for uniformly distributed load along the 

beam case is given in Fig. 2. 

 

 

Fig. 2 Critical LTB mode surface for uniformly distributed load along 

the beam case 

 

Coefficient matrix for the surface presented in Fig. 2 is: 
 

-E = 10&7 8 "245.36 5076.15 14090.68 "9111.57"33.76 804.48 "947.29 164.253.79 ∗ 10&� "7.89 6.60 1.10"1.34 ∗ 10&C 2.68 ∗ 10&� "1.82 ∗ 10&� "8.01 ∗ 10&CD	 (7) 

 

Differential equation of LTB for constant moment along the 

beam case [2], [4] is given in (8). It is easier to solve if 

compared to other considered loading cases. 

 �!	�
! " ##$ ��	�
� " �����#$ = 0                       (8) 

 

In (8), � is magnitude of the bending moment about strong 

axis. Finally, Fig. 3 presents critical LTB mode surface for 

constant moment along the beam case. 

 

 

Fig. 3 Critical LTB mode surface for constant moment along the 

beam case 

 

Coefficient matrix is as follows for the surface given in Fig. 

3. 

 

-� = 10&7 8 "48.21 862.03 17200.83 "8081.84"10.10 227.95 11.55 "236.971.01 ∗ 10&� "1.97 "1.32 3.28"3.34 ∗ 10&B 6.23 ∗ 10&C 5.96 ∗ 10&C "1.22 ∗ 10&�D   (9) 

 

Critical LTB mode of the beam can be obtained by 

substituting the coefficient matrix of the considered loading 

case into (4). 

III. VALIDATION 

Critical LTB modes of various slenderness values for 

concentrated load at free end case are given in Fig. 4. 

 

 

Fig. 4 LTB mode comparison for concentrated load at free end case 

 

In Fig. 4, solid lines show presented function and dashed 

lines show numerical solution of differential equation of LTB. 

Fig. 5 presents LTB modes for uniformly distributed load 

along the beam case. 

 

 

Fig. 5 LTB mode comparison for uniformly distributed load along the 

beam case 

 

Finally, Fig. 6 is given for constant moment along the beam 

case. 

 

 

Fig. 6 LTB mode comparison for constant moment along the beam 

case 

 

It can be seen from Figs. 4-6 that the modes obtained by 

presented critical LTB mode function are fairly close to exact 

solutions for considered loading cases. 

To increase the accuracy of presented mode function is 

possible by adding higher degree terms. However, precision of 
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its introduced state is sufficient for practical applications. 

IV. CONCLUSIONS 

This paper presents a function for critical lateral torsional 

buckling mode of doubly symmetric cantilever I-beams. First, 

differential equation of lateral torsional buckling is solved 

numerically for various loading cases and critical lateral 

torsional buckling modes of each considered loading case are 

determined for the slenderness values between 0.1 and 150. 

Then, a fourth degree bivariate polynomial template is used for 

general representation of critical lateral torsional buckling 

mode and parameters are calculated for each considered 

loading case. Finally, the modes obtained by differential 

equation solution and presented function are compared. It is 

seen that the results obtained by presented study coincide with 

numerical solution of differential equation. Presented function 

can be safely used in energy equations to calculate the critical 

lateral torsional buckling load of doubly symmetric cantilever 

I-beams. 
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