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Flow of a Second Order Fluid through Constricted
Tube with Slip Velocity at Wall Using Integral
Method
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Abstract---The steady flow of a second order fluid through
constricted tube with slip velocity at wall is modeled and analyzed
theoretically. The governing equations are simplified by implying no
slip in radial direction. Based on Karman Pohlhausen procedure
polynomial solution for axial velocity profile is presented.
Expressions for pressure gradient, shear stress, separation and
reattachment points, and radial velocity are also calculated. The
effect of slip and no slip velocity on magnitude velocity, shear stress,
and pressure gradient are discussed and depicted graphically. It is
noted that when Reynolds number increases magnitude velocity of
the fluid decreases in both slip and no slip conditions. It is also found
that the wall shear stress, separation, and reattachment points are
strongly affected by Reynolds number.

Keywords---Approximate ~ solution, constricted tube, non-
Newtonian fluids, Reynolds number.

I. INTRODUCTION

STENOSIS, localized narrowing in an arterial system of

mammals, disturb the normal pattern of blood flow
through the artery and causes arterial disease. Smoking, high
cholesterol levels, high blood pressure and diabetes play a
momentous character in the progression and development of
this disorder. Flow properties of blood such as pressure, wall
shear stress, vortices, and turbulence may have potential
medical significance. In the vicinity of a stenosis, a brief
knowledge of rheological and dynamical characteristics of the
fluid flow may help to understand the complications of
constrictions [1], [2]. These include the progression of a
thrombus, the hardening, weakening, swelling, and tissues
growth into the arteries. Once an arterial abrasion has
developed, a significant change in fluid characteristics can be
seen [3].

Many researchers have pointed out that the major cause of
intravascular plaques is faulty lipid metabolism. As
intravascular abrasions are commonly found in the segments
of curved arteries, at the entrance of branching vessels, or
generally at locations of abrupt changes in geometry which
should take into account the flow characteristics of the blood.
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Due to the flow separation from the artery wall, static zones
occur in the arterial system [4]. They [4] indicate that the fluid
flows with points of inflexion in the velocity profiles and
reserved flow in some cases. The considerable complexity of
prosthetic heart valve is the formation of thrombus. Numerous
researchers have anticipated that the formation of thrombosis
near the valve is the contribution of the static zone. Therefore,
it seems objective to venture that if static zone occur near
constriction, they may well contribute to the problems of
arthrosclerosis.

In the branch of biomechanics, the study of fluid flow in
obstructed tube is always a challenging problem though the
importance of hydrodynamic has been reported for many
years. Young [5] has studied in detail the flow in a mildly
constricted tube. Forrester and Young [6] extended this work
to embrace the effects of flow separation on a mild
constriction. The study of flow in constricted tubes was
analyzed numerically by [7]. Many physicians, researchers,
and scientists have made their efforts to understand the
mechanics of fluid flow in constricted arteries considering the
blood as Newtonian fluid. The blood, however, only under
certain conditions behaves like a Newtonian fluid, of course,
at low shear stress it becomes as a non-Newtonian fluid [8].
The blood, in the larger arteries where the constriction
commonly occurs, treated as incompressible Newtonian fluid.
They [4] proposed that the atherosclerosis plaque
(constriction) is caused by intravascular clotting. For the first
time Fry [9] reported the endothelial changes by inserting a
plug in the thoratic aorta of mongrel dogs, which abrupt the
blood flow. Further, he obtained theoretical results for
unsteady, axisymmetric, incompressible Newtonian fluid flow
numerically and compared with the experimental one. Young
[5] reported the time dependent constriction in tube for
viscous flow. Forrester and Young [6] developed theoretical
and experimental results for the blood flow through
constricted tube. A primary goal of their research was to
predict analytically the separation of flow at Reynolds number
in constricted tube. For analytical results, they use an integral
method. An experiment was performed to check the theory
which was valid for water and glycerol-water solution
(viscous fluid) but not valid for the whole blood, as at low
shear rate blood behaves as a non-Newtonian fluid. Further
results were obtained for pressure drop, separation, and
reattachment regions and compared with the theoretical one.
Morgan and Young [10] investigated a simple and
approximate solution of the fluid flowing through an
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axisymmetric artery having cosine shape constriction, valid
for both mild and sever constriction. Their general approach
was an extension and modification of the work done by
Forrester and Young [6] and made use of integral-momentum
and energy equation for viscous, steady, and incompressible
fluid. Haldar [11] has analyzed the blood flow treating it as a
Newtonian fluid flowing through an axisymmetric artery
having constriction. References [12], [13] explored various
information related to the fluid flowing through an
axisymmetric artery having cosine shape constriction.
Reference [14] analyzed steady and incompressible
Newtonian fluid flowing through axisymmetric constricted
tube taking constant volume flow rate.

In the aforementioned articles, the usual no-slip condition at
the uniform and constricted artery walls has been taken.
Experiments on blood flow shows that under certain
conditions there exist slip velocity at wall. Therefore, it is
necessary to study the blood flow in a constricted artery with
axial velocity slip at the wall. Bennett [15] carried out the
experiments on blood flow in arteries and suggested the
possibility of slip velocity at wall under certain conditions.
Several other investigators [16]-[19] also indicate the axial
velocity slip at the inner surface of the artery wall. In the view
above theoretical and experimental work, it is improper to
ignore slip in the constricted walls.

The aim of this theoretical work is to study the effects of
slip at the constricted tube on the flow variables, magnitude of
velocity profile, pressure drop, wall shear stress and separation
and reattachment points for non-Newtonian model. The flow
is assumed to be steady just to make the problem
mathematically manageable. However, it is anticipated that the
result for steady flow will be responsible for useful
information. As arterial flow is pulsatile, this assumption, of
course, cannot be justified totally. Moreover, it is believed that
blood flow, except in the ascending aorta or under
pathological circumstances, is laminar. In addition, it is well
established that for knowledge of the relationship between the
constriction and blood flow in arteries, a better understanding
the flow characteristics in constriction is a necessary
prerequisite. In this work, therefore, velocity, pressure, shear
stress, separation and reattachment points of fluid flowing
through constricted tube are analyzed.

II. GOVERNING EQUATIONS
V.V=0 (1)

p (Z—f +29(7)’ -7 x (V V)) = —Vp + pdivA, + aydiv (%) +
(V.V)diva, + (7.7)" diva, i

_ + (a; + ay)divA? + pf, 2

1 ( +A, (V(V. V)T) 1 2 i+of @)

where ¥ is the velocity vector, p the constant density, u is the

dynamic viscosity, a; and a, are the material constants, A,

and A, are the first and second Rivlin-Ericksen tensors
defined as:

A=YV + (V) A3)

and,
da, = = = =\\T
A, =0+ 4,(V.7) + (4,(7.7)) %)
For the model (2) required to be compatible with
thermodynamics in the sense that all motions satisfy the
Clasius-Duhem inequality and assumption that the specific
Helmholtz free energy is a minimum in equilibrium, then the
material parameters must meet the following conditions [20]:

u=>0a, <0,anda; +a, = 0. ®)]

III. PROBLEM FORMULATION

We consider an incompressible steady and laminar flow of
a second order fluid in a constricted tube of an infinite length
having cosine shaped symmetric constriction of height 6. The
radius of the unobstructed tube is Ry and R(Z) is the variable
radius of the obstructed tube. The Z — axis is taken along the
flow direction and 7 — axis normal to it. Following [6], the
dimensional boundary form for the constriction is taken as:

S5 nZ ~ ~ 5
R(Z) = RO—E(1+COS(Z)), —Zy < Z < Zy, (6)
Ry otherwise.

In (9), § is the maximum height of the constriction and Z is
the length of the constricted region, R, is the radius of the
unobstructed tube as shown in Fig. 1.

—Zy

Fig. 1 Geometry of the problem

For steady axisymmetric flow of blood in tube, the velocity
vector V is assumed to be of the form

V = [a(# 2),0,w(# 2)]. @)

where #i and W are the velocity components inf —, Z—
directions respectively.
In view of (7), (1) and (2) become;

ou U ow
wtitay ®

R a0 ~ Q 20(@Q) |, 0?
27— PR = —puo—— a i (Vzﬂ—f—z)+(a1+az) (; + ), ©)]

2z | 7.

oh L Q ~ (o2 ) (a1 +ay) (1)
E+puﬂ——/x(—+;)+a1u(v Q—f—z)—2—~T(10)

a7 7
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a=22_02a (11)

h=2@+0) -, (av? (7 - 5) + wv2w) - 222210, 2 4 5,

(12)
e =a () +a () +a () 2G5 09

and V2 is the Laplacian parameter, h is the generalized
pressure.

According to the geometry of the problem the boundary
conditions are:

i=w=0 at #=R(),

_~=0 at 7 =0. (14)

Now, (8) becomes;

a—W+£li(ru) =0. (16)

0z  Roror
From (16) it is noted that 2 is an order of Lie.o (i).
0z Ro 0z Ry
Forrester and Young [6] assumed that for mild constriction if
1/Re 5/Re <1, ‘s/z0 « 1 and RO/ZO ~ 1 then axial normal stress

2

ZZ‘: is negligible as compared to the gradient of shear
component. So, (10) and (11) become

gradient

oh
5=0 (17)
oh 1 [d%w | 10w
5 = wclor *ror) (18)
%w | 19w
w +——) 2
_1 .2 _ (81‘2 ror N a_w
h=sw*—a < +1(0_w)2 )-ﬁ-/} (ar) +p, (19)
2 \or
where a* = 2% and g* = &{:2 From (18) integrating it over
PUG PUG

the tube cross-sections and using the boundary conditions, slip
in the axial velocity w = vy at ¥ = R we obtain;

R 0h 1 (ow
fr Sar = (;)R. (20)

Re

The non-dimensional form of cosine shape constriction
profile is:

5
R(z) = {1 -7 Atcos(m)) 4,09, (1)
1 otherwise

where §* = 5/ Ro' Exact solution of (19) cannot be obtained. In

order to find the approximate solution we assume fourth order

polynomial which is called Karman-Pohlhausen approach
[21]. Therefore;

%:A+B(1—§)+c(1—§)2(10)+n(1—£)3+E(1—£)4 (22)

where U is the centerline velocity and A, B, C, D and E are
undetermined coefficients which can be evaluated from the
following five conditions:

w=v;, atr=R, (23)
w=U atr=0, (24)
Z—‘: =0 atr=0, (25)
dh 1 (9*w | 10w
w=n(Gatio) atr=R (26)
2w U
F:—ZE at r =0. (27)

The slip boundary conditions of velocity v, at the wall and
centerline velocity U are given by (23) and (24), condition
(25) is a simple definition, and condition (26) is obtained from
(18). It is assumed that at r = 0 the velocity profile at the
center of the tube is parabolic (negligible effect of the slip

velocity v;) w =U [1 - ;—z], so that the second derivative of w
with respect to r, we get (27). Thus (22) becomes;

w=U[(FE) (1) + (5) (1-7) + () (1

) (-0 @9

where;
j = BRedh (29)

U dz’

We note that A is the function of z only, since R, U and h
depend only on z. In (29), U and h(z) are unknowns. If Q is the
flux through the tube, then

Q = [ 2nrwdr = nR?U. (30)
Using (28) in (30) we obtain:

_ mR*U

Q= 210

(97 — 2) + 2% 31)

and centerline velocity U can also be written as

R*mR,dh 17nR21;$]. (32)

210 1 [
105 dz 35

97 "mR2

For constant volume flux, i.e. Q = m, we have

y=22 L

R*mR,dh  17mR%*v
97 "mR? i 5]‘ 33)

105 dz 35

In order to obtain a closed solution one more approximation
is taken into account that the velocity profile is parabolic.
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w=ul1-2] (34)

as discussed by [6]. If we neglect the non-linear terms, the
flow will be a Poiseuille flow through the constriction [5].
Substitution of (34) into (19) yield and differentiating w.r.t z,
we get;

dh Ed_R_ « 1 dR B* dR p
z v YT (32 )+96R7dz R
Using (28) and (35) in (20), we obtain;
dp _ 388 1 dR 8 a* dR (848 2608 1 1 dR (2336
o T ) B Gl A Y N D)

In order to obtain velocity W we substitute (29), (33) and
(35) in (28), to get

2 Re dR (4vg
w =2 [2n — 7] + et (2

e 2% +——) [117n — 28192 + 2677° —

75 = 225R?

899*] + —— R;’fd—R [59722n — 233591n? + 24447673 — 81492n*] +
5019625R;‘5’ 2 [-336267 + 11491372 — 1177203 + 392407*] +
T R;f dR[ 179417 + 2493152 — 7339513 + 344657*] +

vg [1 +;(12n — 612+ 2013 — 97]4)], (37

where n=1-"/p, is the axial velocity component as a
function of r and z through constricted tube. We can get
velocity of unobstructed tube by taking R as constant or unity.
The axial velocity profile for [6] can readily be recovered as a
special case by setting a* = f* = 0 and v; = 0 in (37). On the
other hand by setting a* = g* =0, in (37) the axial velocity
component for [19] can readily be obtained.

IV. PRESSURE DROP ACROSS THE CONSTRICTION AND
ACROSS THE WHOLE LENGTH OF THE TUBE

We can get the pressure distribution across p at any cross
section z along the constriction, (36) is integrated using
boundary conditionp = p, at z = z,

2608
225 f

2336
S fR EdR +
Ro R7

88 vg zo 1
EZ fRDdeR__f * —dz, (38)

Zo R%

848 R 1

— Vs —dR
_ 388 fR —dR ta 75 RoR5

+

or;
22, (L-1)
_ 1 L 75 S\RE R* 1168 ,, (1 1
(8p) = ZZS(R R—4)+a <+1304(L_L)>+ s P (R_S_ §)+
75 \R§ RS

ml_ 1y 0 gm_ 1 gy (39)

75Re \R3  R? ReR3 70 (a-bcosu)
where;
5 5
a=1-2p=2 (40)
2R, 2R,
Now;
4 _ 2\-1/2
fo — bcosudu n(a? — b?)~1/2, (41)

Differentiating (41) thrice partially with respect to a, we get
I e = ma (4 +0%) @7~ b1 = f (), (42)
where;
(B-0-B0-ED0-97" @
So that

44 vy L_L 8 i)
75 R, (Rg R? ReRgf(Rg ’ (44)

When there is no constriction i.e. § =0 and f (Ri) =1, the
0

pressure drop across the normal tube is given by:

8
ReRE

(&p)p = — (45)

In the absence of constriction, flow becomes Poiseuille and
the subscript P denotes Poiseuille flow.

We note that (44) includes the results of [6] as a special
case for a* = B* = 0 and v; = 0 in (44). On the other hand by

setting a* = B* = 0 in (44) the results for [19] can readily be
obtained.

V.SHEAR STRESS ON CONSTRICTED SURFACE

The shear stress on the constricted surface is:

u
oz " or Q20w |, 0u 0w 7oz

oF a7 0z 0z

g—j)]k. (46)

Ty = (@ @)lel(ﬁ;—r*‘”%)(z—?i—f)} _az[ﬁ(r
R

We non-dimensionlize (46) and using order of magnitude
analysis, wall shearing stress becomes;

L0 (T avon) @7

pUZ R \0r/pR ordz ~ or 9z/)g

The result of (47) is very large and it is not possible to state
the complete mathematical result so only the graphical results
will be presented for the analysis of shear stress.

VI. SEPARATION AND REATTACHMENT

Prandtl [22] has explained the phenomena of separation in
such a manner that the velocity of the fluid in the boundary
layer drubbed towards the wall and inside the boundary layer
the kinetic energy of the fluid particles appears to be less than
that at the outer edge of the boundary layer. This means that
the fluid particles inside the boundary layer may not be able to
get the pressure which is applied in the outer layer. Even a
small rise in pressure may trigger the fluid particles near at the
wall to stop and turn back to form a recirculating flow region,
which is the characteristic of the separated flows.
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The separation and reattachment points can be calculated by
taking negligible effects of shear stress at the wall, i.e. 7, = 0.

(), +a (wim+ 222 =, (48)

R, \or araz ' ar oz,

Due to very large calculations only graphical results will be
presented. It is noted that when a* = 0 and vy = 0 the results of
[6] for separation and reattachment are recovered.

VII. GRAPHS AND DISCUSSIONS

We are considering two-dimensional flow of a second order
fluid as a blood flowing in a constricted tube of infinite length.
This geometry, of course, is intended to simulate an arterial
stenosis. The flow is assumed to be steady, laminar and an
incompressible. An approximate method is used to get the
solution for the velocity, pressure drop across the constriction
length, across the whole length of the tube and shear stress on
the constricted surface. Just to study the effect and influence
of slip on the flow parameters, two values of v; = 0 and 0.05
has been considered. The effect of different flow parameters
on the fluid flow are simulated with the help of graphs and
proper discussion related to each graph is also provided.

In Fig. 2, the variation of non-Newtonian parameter a* = 0
on the velocity profile is described at z = 0.435, for no slip
vy =0 and slipyg = 0.05, takingR, =50,6* =0.083. It is
denoted that velocity decreases with an increase in non-
Newtonian parameter which seems physically to be correct
and on the other hand the magnitude of the velocity increases
with wall slip.as compare to no slip.

N
Il
e
~
w

o
pe)

.=50,8*=0.03,6* = 0.083

- a*=-20,vs=0 \
— a*=-20,v,=005

0.5 b
—_— a*=-40,v;=0
- a*=—-40,v,=005
0.0 0.2 0.4 0.6 0.8

Fig. 2 Effect of non-Newtonian parameter a *and slip velocity v; on
velocity

It can be seen from Fig. 3 that with an increase in Reynolds
number velocity of the fluid decreases near the throat of the
stenosis, however, it increases in the diverging region and
remains parabolic with slip or no slip. It can also be seen that
velocity increases with slip effect. The effect of Reynolds
number on dimensionless pressure gradient between z = +1
takingsa* = —1.1, §* =0.083 is shown in Fig. 4 it is well
mentioned that the pressure gradient increases up to the throat
of the constriction and then decreases in the diverging region.
It is also observed that the value of pressure gradient at any
point increases as Reynolds number increases in both

converging and diverging region of constriction and pressure,
on the mean while pressure decreases with slip Same behavior
of a*and &*on the pressure gradient is observed in Figs. 5 and
6. The theoretical distribution of shearing stress along the wall
is illustrated in Figs. 7-9. Fig. 7 depicts the influence of
constriction height on wall shear stress in the presence of slip
and no slip. It is noted that with an increase in constriction
height §*wall shear stress increases, and its maximum value
occurs at the middle of the constriction, which seems
physically to be correct. It is also observed that slip causes an
increase in wall shear. It is observed from Fig. 8§ that for any
Reynolds number in the presence of slip or no slip, the
shearing stress reaches a maximum value on the throat and
then rapidly decreases in the diverging region. It is also noted
that shear stress decreases with an increase in Reynolds
number. It means that Reynolds number provides a
mechanism to control the wall shear stress. From Fig. 9, it is
well mentioning, as expected, that as non-Newtonian
parameter * increases wall shear stress also decreases. In the
view of slip wall shear stress decreases more rapidly. Figs. 10
and 11 give the influence of Reynolds number on the
separation and reattachment points respectively. It is observed,
as naturally expected, that separation point moves upstream
with an increase in Reynolds number while reattachment point
moves downstream. It is also observed that the separation
point moves upstream and the reattachment point moves
downstream as the with slip condition.

Z =0435a*=-0.2,4=0.03,6*= 0.083

= 1.0F 4
Re=30,v;=0
- Re=30,vs=0.05
050 Re=60,v,=0 j
i Re=060,vs=0.05
0.0 0.2 0.4 0.6 0.8

Fig. 3 Effect of Reynolds number R, and slip velocity v, on velocity

VIII.CONCLUSION

In the present study, an incompressible laminar and steady
flow of a second order fluid with slip velocity at wall through
constricted tube is modeled and analyzed theoretically. The
fluid is assumed to be blood flowing through the artery. The
expressions for magnitude of velocity field, pressure gradient,
wall shear stress and separation phenomena for the geometry
of the constriction are presented. An integral momentum
method is applied for the solution of the problem. The
summary of findings of the present work is as follows:

e Velocity decreases with an increase in non-Newtonian
parameter.
e Velocity increases with slip velocity at wall.
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Shear stress and pressure decreases with slip velocity at
wall.

Viscous forces are dominant over inertia forces near the
throat of the constriction, however, opposite effect is
observed in the diverging region

Reynolds number and non-Newtonian parameter are
economical parameters to control the wall shear stress.
Reynolds number also provides a mechanism to control
the separation and reattachment points.

The present study includes the theoretical and
experimental results for the velocity profile, pressure
gradient and wall shear stress of [6] and [19]as a special
case for a* = g* =0 and v; = 0.

B=9,a*=-1.1,6*=0.083

B*=0.13,R.=3.5, a* = -0.01

§=0.063,v,=0
8=0.063,vs=0.05
8'=0.083,vs=0
8*=0.083,v5=0.05

Fig. 7 Effect of §* and slip velocity vg on wall shear

1OF ‘ . — =20,v,= 15F
/:-:\\ - R: = zg: = 8.05
(7 TNND Rl
o 4 \ .
<4 oof il \ ] .
/ \
-0.5, / \ 1
7 N
10 05 0.0 05 10
z

B*=0.13,6*=0.083, @* = -0.01

Re=35,vs=0
Re=3.5,,=0.05
Re=4,vs=0
Re=4,v,=10.05

Fig. 4 Effect of Reynolds number R, and slip velocity v on pressure

Fig. 8 Effect of Reynolds number R, and slip velocity v; on wall

distribution shear
B'=9,Re=50,6" = 0.083 Re=0.13,8*=0.083, a* = —=0.01
20 . > - a*=—-1.1,v=0 T o=y T
‘ 7N\ | — @*=-1.1,%,=005 PN - F=013,%=0
. 1.3F - B*=0.13,¥,=0.05
156 —_— a*=-13,vs=0
: - @*=-13,v,=005 - Fr=016,%.=0
/,’_\\ Lol B*=0.16,vs=0.05
o 101 Ve AN ] s
< V4 A Y (3
05k // \ ] 11f
0.0f / \\ ] 1ok Py
/ -
~1.0 Z05 0.0 0.5 1.0 “10 05 0.0 05 10
z z

Fig. 5 Effect of non-Newtonian parameter a* and slip velocity v; on

pressure distribution

B*=9,Re=50,a* = -1.1
- - 6*=0.063,v,=0
6*=0.063,v,=0.05
5*=0083,v,=0
- §=0.083,v,=005

Fig. 6 Effect of §* and slip velocity vg on pressure distribution

Fig. 9 Effect of non-Newtonian parameter 8* and slip velocity v;
wall shear

&% =0.083, 0" = -0.03,8'=3
0.9F ‘ ‘

0.2 .

—-0.15 —-0.10 —-0.05

z

-0.25 -0.20

Fig. 10 Separation points in the converging region
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8% =0.083, 0" = —0.03, '=3

Fig. 11 Reattachment points in the diverging region
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