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Riemannian Manifolds for Brain Extraction on
Multi-modal Resonance Magnetic Images

Mohamed Gouskir, Belaid Bouikhalene, Hicham Aissaoui, Benachir Elhadadi

Abstract—In this paper, we present an application of Riemannian
geometry for processing non-Euclidean image data. We consider the
image as residing in a Riemannian manifold, for developing a new
method to brain edge detection and brain extraction. Automating this
process is a challenge due to the high diversity in appearance brain
tissue, among different patients and sequences.

The main contribution, in this paper, is the use of an edge-based
anisotropic diffusion tensor for the segmentation task by integrating
both image edge geometry and Riemannian manifold (geodesic,
metric tensor) to regularize the convergence contour and extract
complex anatomical structures. We check the accuracy of the
segmentation results on simulated brain MRI scans of single
T1-weighted, T2-weighted and Proton Density sequences. We
validate our approach using two different databases: BrainWeb
database, and MRI Multiple sclerosis Database (MRI MS DB). We
have compared, qualitatively and quantitatively, our approach with
the well-known brain extraction algorithms. We show that using
a Riemannian manifolds to medical image analysis improves the
efficient results to brain extraction, in real time, outperforming the
results of the standard techniques.

Keywords—Riemannian manifolds, Riemannian Tensor, Brain
Segmentation, Non-Euclidean data, Brain Extraction.

I. INTRODUCTION

NOWADAYS, the analysis of medical images has
drawn the attention of several researchers, institutes,

associations and organizations to fight against the incurable
diseases and address the problem of the increasing number
of images and diagnosis time, to be able develop systems
for automatic detection and classification. Since the brain
extraction offers a significant step for the diagnosis of medical
images. We propose, in this paper, to present an application
of Riemannian manifolds to such a technique.

For an Accurate computer-aided diagnosis of magnetic
resonance imaging of the human brain, the extraction of brain
regions is a very important step for most methods and image
analysis techniques. This step is to exclude all external brain
tissues, such as the skull, dura, eyes, etc, with precision,
without touching any part of the brain tissue. However, the
increase in number of the images acquired every day in
hospitals and medical centers requires the development of
methods for automatic analysis of multi-sequence information
to aid diagnosis.

Medical imaging has recently known the development of
new modalities, which has made the analysis of images
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very complex, thus, such images are not scalar values. This
progression in the image data processing is not in Euclidean
space, but can be found in Riemannian manifolds.

Mathematically speaking, using non-Euclidean image data
a differential manifolds can be modeled. On a manifold,
geometric quantities are measured using Riemannian metric
[1]. The image data are considered as residing in a Riemannian
manifold and are represented in the exponential map for this
manifold together with the Riemannian weighted mean of
image data [2]. The segmentation of brain tissues, of both
low and high grades, using supervised method, based on a
Riemannian manifold. It starts with a pre-processing step, after
that the features are extracted and each pixel is classified.
Finally, a post-processing step is applied to the classified pixel,
and the provided analysis includes T1, T2, FLAIR and T1 with
contrast (T1C).

A. Related Works

Image analysis using the differentiable geometry become
a very important area for non-Euclidean data. The use of
Riemannian geometry is more common for medical image
processing, in particular, and forms processing, in general.
In computer vision, the Riemannian geometry is used for
the geometry of 2D and 3D objects, which are invariant to
rotation, translation and scaling. The Riemannian manifolds
are used also for different processing phases of forms. The
symmetric positive definite matrix (tensor) is used in the image
filter [3], [1], in edge detection based geodesic distance and
Riemannian metrics [4], [5], [6], in segmentation and texture
analysis [7], [8], [9], [10], [11], and in classification [11],
[12], has a natural structure as a Riemannian manifold. In
this respect, various applications are presented. To robust atlas
estimation the geometric median on Riemannian manifolds
is used as a minimizer of the sum of geodesic distances
which provides a robust statistical estimator of centrality for
manifold-valued data, [13] developed the concept of median
geometry to general Riemannian manifolds.

Riemannian manifolds have also shown their effectiveness
in the human re-identification used by [6] to distinguish sets
of patches belonging to specific individuals. The works of [12]
aim to extend the definition of the Ricci calculus to the case of
high angular resolution of diffusion tensor using a Riemannian
scalar measure for tensor valued image analysis. Based on the
tensor clustering methods [7], the extraction of the neural tracts
of interest from a diffusion tensor image and the delimitation
of the border of bundle, by the combined algorithms of
connectivity maps and tensor distances. Recently, [14] has
used an anisotropic diffusion tensor for extracting the local
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information for edge detection and segmentation of brain
tumor [11].

We now present a brief overview on publications dealing
with segmentation and extraction of brain and diffusion tensor
data. Brain extraction, also known as skull stripping, is one
of the most important preprocessing steps for automatic brain
image analysis, several approach and techniques to perform
brain segmentation and extraction is proposed. Starting
with the brain extraction algorithm (BEA) for T2-weighted
magnetic resonance imaging (MRI) scans [15] based on low
pass filter to remove background, morphological operations
and largest connected component to obtain the brain mask
from which the brain is extracted. The authors proposed
in [16] the brain extraction method for T1-weighted MRI,
using region labelling and morphological operations, and
adaptive intensity thresholding method. Nonlocal segmentation
technique embedded in a multi-resolution framework [17],
applied on a large dataset. The brain extraction from
T2-weighted MRI was done using histogram based gradient
calculation by [18]. The primary brain areas; gray matter
(GM), white matter (WM), and cerebrospinal Fluid (CSF)
were extracted efficiently out from 2D to 3D images. Hidden
Markov model and graph cuts methods were used to brain
segmentation by [19], [20], respectively. One more method is
the adaptive region growing algorithm developed by [21] to
evolve a front at the seed region of interest (ROI) based on
a region growing algorithm which uses the complementary
information provided by conventional MRI, such as T1
weighted and T2-weighted to perform the brain segmentation
and extraction.

Despite all these efforts, all of these algorithms present
limitations and issues to be solved for a consistent and efficient
brain extraction algorithm. BET and BSE [22], [23] include
regions outside the brain into the brain tissues [21], these
algorithms present also bad results in poor spatial resolution
and noisy images, BET does not always give satisfactory
results on 3D-T1 images and time-consuming [24]. On the
other hand, approaches require one slice like [25] and the
others require the images being T1-weighted or t2-weighted
[15], [16], it makes a hard constraint in clinical routine
applications.

In this paper, we extend the Riemannian manifolds
approaches to perform the automatic extraction of brain
regions on multi-modal RMI T1-weighted, T2-weighted and
Proton Density images captured in tree views coronal, sagittal
and axial. We demonstrate the validity of this approach with
a qualitative and quantitative result using two different data
sets: Brainweb database and MRI Multiple sclerosis database.
The obtained results show an efficient performance in different
modalities compared with previous methods.

B. Our Contributions
The main contributions of our study may be summarized

as:
• We propose a brain extraction algorithm based on the

Riemannian manifold relying on the works cited on the
previous subsection and on the problems encountered in
some methods.

• Supposing that an MR image is residing in non-Euclidean
data, we firstly, propose an efficient smoothing for MRI
data extended from Riemannian geometry, than we refer
to the metric tensor for brain segmentation to obtain a
brain mask.

• Our method is inspired from the metric tensor, which is
based on the geodesic distance and the edge detection
proposed by [1], [2] and [7]. Such an algorithm is, then,
generalized to extracting brain regions.

II. THEORY

A. Riemannian Differential Geometry

We review some basic definitions and notations in
Riemannian geometry. Given any point p ∈ M and a tangent
vector ξ ∈ TpM , the tangent space of M at p, M is a
differentiable manifold in the vicinity of p. There is a maximal
open interval Iξ ∈ R about the origin and an unique geodesic
curve γξ ∈ M satisfying γξ(0) = p, γ′

ξ(0) = ξ (Fig. 2). The
map γ : Ω → M where t → γ(t) is a path, the vector field
along γ is defined if the affine connection ∇ .

γξ = 0. Let U be
an open set in R

n, and let P and Q be smooth vector fields
on U . Then:

P =
n∑

i=1

ai
∂

∂xi
, Q =

n∑
i=1

bi
∂

∂xi

where a1, a2, ..., an and b1, b2, ..., bn are the components of the
vector fields P and Q with respect to the Cartesian coordinate
system (x1, x2, ..., xn) on R

n. The directional derivative ∂PQ
of the vector field Q along the vector field P is then given by
the formula:

∂PQ =

n∑
i,j=1

aj
∂bi

∂xj

∂

∂xi
(1)

From (1), since the connection ∇ is torsion-free, we can
demonstrate that:

∂PQ− ∂QP = ∇PQ−∇QP = [P,Q] (2)

Then the differential operator, sending smooth vector fields p
and Q to ∂PQ, is an affine connection on U . For the given
map (U, x1, x2, ..., xm), we put:

∇∂i(∂j) = Γk
ij∂k

In a system of local coordinates given with P = ξi ∂
∂xi and

.
γ = dxi

dt
∂

∂xi we have.

∇ .
γP = (

dξi

dt
+ Γi

jkξ
k dx

i

dt
)
∂

∂xi
. (3)

This shows that ∇ .
γP depends only on the values of P along

the curve γ.
The exponential map defined in tangent space to manifolds

expp : Tp(M) → M by expp(ξ) = γξ, thus the curve
γξ(t) = expp(tξ). Since the exponential map expp is a local
diffeomorphism, it has an inverse map so-called logarithmic
map logp : M → TpM where logp(γξ(t)) = tξ.

Now we briefly mention the notions involving cut points.
Let Ep = {ξ ∈ Tp(M) \ ‖ξ‖ = 1}. For each ξ ∈ Ep we
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define C(ξ) = sup{t > 0 : d(p, γξ(t)) = t}, Where d is the
Riemannian distance.

For t sufficiently small, the point expx(tξ) has the normal
coordinates xi = ξit, ξ = ξiei. However, expx(tξ) = γξ(t) is
the geodesic with initial velocity ξ.

0 = Γi
jk(tξ

1, ..., tξm)ξjξk.

At t = 0, 0 = Γi
jk(0)ξ

jξk for any choice of (ξ1, ..., ξm),
which demonstrates

dξi

dt
+ Γi

jkξ
k dx

j

dt
= 0.

The vector field along γ in the initial condition. The geodesic
distance along the curve γ is defined as:

∇ .
γγ = 0 (4)

 

 

 

 

 

(0)�

Fig. 1 The geodesic curve γ(t) defined by the starting point
P and the initial velocity γ′(0). The endpoint is computed

by applying the exponential map, such that q = expp(γ
′(0))
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Fig. 2 Local coordinate system, geodesic curve γ(t),tangent
space and exponential map at p ∈ M [10]

B. The Space of Diffusion Tensor

Let x be a point of the manifold that we consider as a local
reference and −→xy a vector of the tangent space TxM at that
point. The function of exponential map, defined in the tangent

space TxM , can maps to each vector −→xy ∈ TxM the point y
of the manifold by the geodesic starting from x. There exists
one and only one geodesic starting from that point with this
tangent vector.

In Riemannian manifolds, we denote the logarithmic map,−→xy = logx(y), as the inverse of the exponential map, y =

expx(
−→
xy). Let S(n) be the space of n×n symmetric matrices

and S+(n) the space of symmetric positive-definite matrices.
A real n × n matrix M is symmetric if M = MT and
positive definite if xTMx > 0 for all nonzero x ∈ R

n,
we consider an a diffusion tensor MRI as tensor, is also a
differentiable manifold with a natural Riemannian structure.
Moreover, can formulated as a Riemannian symmetric space.
Which lead to computing geodesics along curves. The forms
of different operators (metric, tensor, connection, geodesics,
...) depend on the Riemannian manifold and metric. The
feature space of diffusion tensor of MRI is identified with
S+(3). At each point p ∈ S+(n), the identity mapping
p ∈ S+(n) → (σ11, ..., σij), i ≤ j, i, j = 1, ..., n, the tangent
space TpS

+(n) is equal to S(n). So a basis of TpS
+(n) can

be defined as:

∂

∂σij
↔ Eij ∈ S(n), i ≤ j, i, j = 1, ..., n (5)

where,

Eij =

{
1ij Si i = j.
1ij + 1ji Si i �= j.

(6)

and 1ij is the n × n matrix with 1 at element (i, j) and
0 everywhere else. to convert S+(n) into a Riemannian
manifold, one can introducing a Riemannian metric g at point
p.

g(
∂

∂σij
,
∂

∂σ kl
) = 〈 ∂

∂σij
,

∂

∂σkl
〉p = tr(p−1Eijp

−1Ekl). (7)

where tr(.) denotes the trace, The positive-definite inner
product can be written as 〈A,B〉p = tr(p−1Ap−1B),
A,B ∈ TpS

+(n) [1], [2], [26]. The geodesic distance
between two point A,B ∈ S+(n) is the minimum
length of curves connecting them, e.g. dg(a, b) =
argminC{l(C)|C(a) = A,C(b) = B} for a smooth curve
C(t) : [a, b] → S+(n) in S+(n), the length of C(t) can be
computed as:

l(C) =

∫ b

a

‖C ′(t)‖C(t)dt =

∫ b

a

√
tr(C(t)−1C ′(t))2dt. (8)

The geodesic with the initial point and tangent vector Σ ∈
TIS

+(n) given by exp(tΣ), I is the identity matrix. An
arbitrary geodesic γ(t) such that γ(0) = p and γ′(0) = Σ,
under the group action [26], is given by:

γ(p,Σ)(t) = p1/2 exp(tp1/2Σp−1/2)p1/2. (9)

From (9), it follows that expp(Σ) =
p1/2 exp(p1/2Σp−1/2)p1/2. The logarithmic map is given by
logp : S+(n) → TpS

+(n) o logp(γ(p,Σ)(t)) = tΣ. Therefore,
for a point A near p

logp(Σ) = p1/2 log(p−1/2Ap1/2)p1/2 = p log(p−1A). (10)
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Thus, the geodesic distance between two points x and y in
S+(n), using the Frobenius norm of a matrix (‖.‖F ) is given
by:

d(x, y) =
∥∥log(x−1y)

∥∥
F
=

√
tr[log(x−1y)T . log(x−1y)].

(11)

(a) (b)

Fig. 3 (a): The tangent planes at points x and y of the sphere
S2 are different: the vectors v and w of TxM cannot be

compared to the vectors t and u of TyM . (b): The geodesics
starting at x are straight lines in the exponential map and the

distance along them is conserved [2].

C. Nonlinear Diffusion Filtering Generalised

In this section, we use an anisotropic Gaussian kernel for
image smoothing and filtering to obtain an efficient edge
detection of brain images. The application of Anisotropic
Diffusion to digital images processing, comes from the
application of the equation of heat diffusion to evolve
gray-scale images f(x, y). The Ficks low giving the expression
of the flux j by the following equation:

j = −U.∇f (12)

where, ∇f is the gradient. The relation between ∇f and j is
described by a positive-definite, symmetric matrix U referred
to as diffusion tensor. The local variation the overall energy
in the image is driven by ∂f

∂t= −div(j). The PeronaMalik
Anisotropic Diffusion use the following anisotropic diffusion
equation to evolve gray-scale images f(x, y).

∂f

∂t
= −div(U.∇f) (13)

Expresses the variation of energy at every position in
the image, where U =ρ(‖∇f‖2) is a scalar function of the
gradient of image f , and the function ρ is an edge-stopping,
halt the heat-ow process at object boundaries. This idea is to
measure the conductivity of the image depending upon the
Euclidean magnitude of the gradient. However, they propose
a simpler, discrete scheme based on the transfer of energy
between each pixel and its four direct neighbors. First, we
define an anisotropic Gaussian kernel for smoothing MR
images. Gaussian smoothing calculates weighted averages
in an image region. The classical Gaussian filter has been
generalized by [1] and [2] to smooth non-linear image data,
e.g. tensor-valued images.

Gσx
(x) =

1

(
√
2πσx)n

.exp(−xTx

2σ2
x

) (14)

The smooth image is fσx
(x) = Gσx

∗ f0, where Gσ

represents a Gaussian filter with standard deviation σ and
∗ is the convolution operator. We suppose a neighbouring
window contains the pixel set x1, ..., xm that is fσx

(x) =
m∑

k=1

Gσx
(xk)pk. At position x the Riemannian filter outputs

the Riemannian weighted mean for the feature set:

fGausmo = argmin
p∈M

(
1

2

m∑
k=1

Gσx
(xk)dg(p, f0(xk))

2). (15)

The degree of smoothing can be controlled by the filter
width σx of the Gaussian kernel. The performance of the
Riemannian filter can be automatically adapted to the noise
distribution of the image. If the impulse noise dominates the
local region of a pixel, then the filter performs predominately
like a median filter and it is more likely to output one of the
neighbouring data-values.

a b c d 

Fig. 4 Examples of brain region delimitation for medical
images using anisotropic diffusion generalized as

non-Euclidean image data for different deviation. The first
line shows the results of the algorithm on the image, the

second line shows the results of the game frame for different
values of σ. (b), (c) and (d) for 0.5, 2 and 4, respectively

III. BRAIN DETECTION BASED ON STRUCTURE TENSOR

The structure tensor is a field of symmetric positive matrices
that encodes the local orientation and anisotropy of an image.
In this section, we show how to a structure tensor will
be generalized and applied to the MRI brain detection as
non-Euclidean image.
Based on [1] which generalized the structure tensor to
non-Euclidean image data and on [27], [26], the image data
can be considered as a map domain from Ω in a differentiable
manifold M . i.e. f : Ω ∈ R

2 → M . The local variation of a
2-dimensional image f , noted df , is given by

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2.

The square vector norm is:

df2 =
2∑

i=1

2∑
j

(
∂f

∂xi
.
∂f

∂xj
)dxidxj (16)

where ∂f/∂xi is the directional derivative of f along xi. Such
that hij = ∂f

∂xi
. ∂f
∂xj

, define the metric tensor, we have df2 =
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dxThdx where dx = (dx1, dx2)
T . Now we consider an image

f as a 2-dimensional manifold Mr in M , the parametrisation
Φ : Mr → M , ∂f/∂xi is a basis of TxMr. Let x1, x2 be the
local coordinates of Mr, then the map is given by:

(x1, x2) → Φ1(x1, x2), ...,Φn(x1, x2)

The metric tensor h measures the length of the arc ds in Mr

as:

ds2h =
2∑

i=1

2∑
j

hijdxidxj . (17)

and the metric tensor g don M is:

ds2g =

2∑
i=1

2∑
j

gijdΦidΦj . (18)

We assume that Φ is isometric, then (17) and (18) are equal,
and by using the rule of change coordinates. The Riemannian
metric tensor h is:

hkl =
2∑

i=1

2∑
j=1

gij
∂Φk

∂xi

∂Φl

∂xj
. (19)

The metric tensor h characterizes the local geometry of
image f , any change of f is stock at the unit direction
v = (dx1, ...dx2), that maximizes or minimizes df2. The
maximal and minimal rate of changes at a given point is
given by the maximum λ+ and minimum λ−, eigenvalues of
the structure tensor h, corresponding to eigenvectors e+, e−,
which are the directions of maximal and minimal changes.{

λ+ =
h11+h22+

√
(h11−h22)2+4h2

12

2

e+ = (2h12, h22 − h11+
√
(h11 − h22)2 + 4h2

12)
T

(20)

The edge detection of brain regions is controlled by the
values of the eigenvalues λ+, and eigenvectors e+ of the
structure tensor. When the image is scalar-valued, means
that e+ = ∇f/ ‖∇f‖, e− = ∇fT / ‖∇f‖, λ+ = ‖∇f‖2
and λ− = 0. λ+ and λ− that discriminate different local
geometries. The location of brain from non-brain regions is
relative to the CSF that separate include and exclude regions.
The CSF has a lower intensity value than the nearby brain
regions and other structures. The different regions considered
as different local geometries identified by the eigenvalues
and eigenvectors to separate them (Fig. 4). To detect both
edges and corners of brain we use the gradient norm GN =√

λ+ + λ− [1]. With these rules, we obtain a classification
of the new voxels depending on their neighborhood with
connectivity 4.

In Fig. 5 the color and aligned square delimits the seed
region of interest (ROI). Each line contains an image with a
different texture, and each column represents the segmentation
with proposed algorithm which based on the anisotropic
diffusion and structure tensor for different values of deviation
σ. (a) original image, (b) segmented image for σ = 0.5, (c)
for σ = 2, and (d) for σ = 4.

a b c d 

Fig. 5 Segmentation of some objects including different
feature and brain MRI based on structure tensor

IV. SEGMENTATION AND EXTRACTION OF BRAIN MRI

Based on the proposed method, we develop a fully
automatic segmentation algorithm, of 2-D brain images, for
multimodal MR images. The segmentation procedures based
on edge detection algorithm, as shown in Fig. 5, using
the structure tensor growing as cercal on four neighbor
pixels based on the eigenvalues and eigenvectors (20). The
segmentation of region of interest (ROI) f0 is based on
the radius r of the tensor circles C, if the neighboring
pixels have an intensity close, then the surface in which the
tensor propagate belong to the ROI, Otherwise belongs to the
non-brain tissues (Fig. 6 c).

f0(i, j) =

{
C(i, j) if r < ε
0 Otherwise

(21)

We first applied the proposed algorithm for T1-weighted
(T1w) MRI scans, which are most often used for brain
tissue segmentation, due to the generally high WM and GM
contrast and the reduced effects of WM lesions in patients
with neuro-degenerative diseases, Then tested on multi-modal
MR images. The proposed algorithm has tested, also, for
different gray scaling texture of The USC Texture Mosaic
Images dataset [28] as shown in Fig. 5. Very simple procedure
will derive a boundary from a connected region of pixels,
and conversely can fill a boundary to obtain a region of
interest. After getting the mask of brain region using the
geometric characteristics we will derive the skull from the
brain image. We proceed to separate the brain from non-brain
tissue. However, the proposed method exclude the background,
the skull, and bone, and the brain tissue include all cerebral
White Mater (WM), Gray Mater (GM) and Cerebrospinal
Fluid (CSF) in ventricles and along the surface of brain and
include also the tumor region.

fbr(i, j) =

{
f0(i, j) if (i, j) ∈ R
0 Otherwise

(22)

Most methods of brain extraction are developed for
T1-weighted [17], the other methods include different
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sequences of magnetic resonance images, without tumor
region. Our approach is to segment brain regions that contains
both normal and abnormal regions, to develop a framework
for detecting brain tumors based on a pre-treated image.

After the segmentation of the brain, we use the principle
of region growing method for extracting the surface of
the segmented brain to the different weighted of MRI,
T1-weighted, T2-weighted and Proton Density in the tree
main slices axial, sagittal and coronal. The proposed method
shown the efficient results to brain region segmentation and
extraction included the WM, GM and CSF. The qualitative and
quantitative results are shown in Figs. 10, 11 and 12 regrouped,
in axial slice, coronal and sagittal slice, respectively, for the
three different modalities.

a b c 

Fig. 6 The steps of the brain segmentation based on the
Riemannian metric tensor from the left to right, (a) original

image, (b) the smooth of the image, (c) mask of brain image
based on the computation of tensors

Fig. 7 Representation of brain segmentation using our
algorithm, first line represent the result of T2-weighted and
second line their of T1-weighted and from lift to right, the
original image, brain mask based on the tensor and brain

extraction using tensor growing

V. EXPERIMENTS

In this section, we present the performance of our approach
quantitatively and qualitatively to brain extraction, and we
compare the results with the most known approach and
methods cited previously or used in state of the art.

Data sets
To evaluate the performance of our approach, we use the

following data sets:
1) BrainWeb: contains the MRI volumes for normal brain.

The parameter settings are fixed to 3 modalities (T1w,
T2w, and PD), 5 slice thicknesses (1mm, 3mm, 5mm,
7mm, and 9mm), 6 levels of noise (0%, 1%, 3%, 5%
7% and 9%), and 3 levels of intensity non-uniformity
(0%, 20%, and 40%). The discrete anatomical model
applied to generate the simulated brain MRI data was
used as ground truth data. The discrete anatomical and
the simulated brains were transformed to coronal and
sagittal slices before starting the experiments.

2) MRI Multiple sclerosis Database (MRI MS DB):
Thirty-eight patients (17 males, and 21 females), aged
34.1 ± 10.5 (mean age ± standard deviation), with
a CIS of MS and MRI-detectable brain lesions were
scanned twice at 1.5 T with an interval of 6-12 months.
The transverse MR images used for the analysis were
obtained using a T2-weighted turbo spin echo pulse
sequence (repetition time=4408 ms, echo time=100ms,
echo spacing = 10.8 ms). The reconstructed image had a
slice thickness of 5 mm and a field of view of 230 mm
with a pixel resolution of 2.226 pixels/mm. Standardized
planning procedures were followed during each MRI
examination [29], [30].

To validate qualitatively the obtained results with
ground-truth masks, we use the Dice Similarity Coefficient
(DSC)[31]. This measure indicates the amount of area
overlap between the automatically detected and the manually
delineated brain image. This measure is calculated as follows:

DSC =
2× TP

2× TP + FP + FN
(23)

where TP (True Positive) are the correct detections, FP (False
Positive) are incorrect detections, and FN (False Negative) are
missing detections. The performance of our implementation
is qualitatively shown in Fig. 7. Some misalignments with
the ground truth can be seen in particular zones, where the
standard techniques tend to enlarge the mask specially on the
neck and spinal cord.

We tested the performance of our approach with the
database synthetic MRI BrainWeb database contains simulated
MR images volumes for normal brain for T1w, T2w and
PD images with five degrees of noise were chose for 0% to
40% of intensity non uniformity and MRI Multiple sclerosis
Database. The brain images were transformed to the axial,
coronal and sagittal orientations before starting experiments.
The qualitative results of the simulated brains for axial,
coronal and sagittal slices shown in Figs. 10, 11, and 12,
respectively, and the quantitative results are presented in Table
I and Fig. 9. This validation shows that the results produced
by our method (RMBE) are comparable to or better than
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TABLE I
THE QUANTITATIVE RESULTS OF OUR APPROACH FOR BRAINWEB DATA

SET IN DIFFERENT MODALITIES (PD, T1W, AND T2W) BY SLICES

Modality Slice Mean of DSC

PD
Axial 0.965

Coronal 0.952
Sagittal 0.918

T1w
Axial 0.972

Coronal 0.966
Sagittal 0.964

T2w
Axial 0.902

Coronal 0.913
Sagittal 0.898

the popular methods BET[22], BSE[23], MARGA[21] and
SPM[32]. Moreover, analyzing the results, we observed that
when using the T1-weighted the better DSC was obtained
(0.968±0.015) than when using T2-weighted (0.915±0.021).
Fig. 8 shows a quantitative comparison between our method
with the well-known MARGA, BET, BSE and SPM.
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Fig. 8 Quantitative comparison between our method with the
well-known algorithms of brain extraction

The proposed approach take full image to start processing,
against the well-known methods start from the middle
slice. However, other methods use the combination between
T1-weighted and T2-weighted to obtain the brain extraction.
The existing methods require some preprocessing technique
like rotation and cropping. In addition, certain parameters
as input to start procedure or others take a specific view
of slice. But our method require only the brain boundary
detection using the generalized tensor to brain extraction
in multi-modal MRI. Another challenge of medical image
processing is the time-consuming procedure, being this point
some of the existing methods take more time. To evaluate
the efficacy of our algorithm, the running time takes 1.6s for
boundary detection and 2.9s for brain segmentation.

VI. CONCLUSION

In this paper, we proposed a new adaptive image
segmentation and extraction algorithms, which is based on
a Riemannian manifolds, where structure Tensor, geodesic
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Fig. 9 Average of DSC for brain extraction using the
proposed method for MRI Multiple sclerosis Database
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Fig. 10 The steps of the axial slice brain segmentation and
extraction based on the Riemannian metric tensor from left
to right, (a) original image, (b) brain mask, (c) brain region
extracted for the PD, T1w and T2w, respectively from the

first line

distance for brain multi-modal MR image segmentation and
extraction.

Firstly, our method uses a slice by slice filtering and
smoothing of the 3D MRI volumes as residing on a
Riemannian manifold and we generalize the approach of [1]
used for filtering and edge detection with non-Euclidean image
data to segmentation and brain region extraction. This initial
pre-treating approach 325 provides a robust brain boundary
using a generalized tensor, which ensure the true brain one.
Secondly, based on the slice filtering and edge detection
the segmentation of the boundary detected using geodesic
distance, exponential map and intrinsic metric, carried out.
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Fig. 11 The steps of the coronal slice segmentation and
extraction based on the Riemannian metric tensor from left
to right, (a) original image, (b) brain mask, (c) brain region
extracted for the PD, T1w and T2w, respectively from the

first line
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Fig. 12 The steps of the sagittal slice segmentation and
extraction based on the Riemannian metric tensor from left
to right, (a) original image, (b) brain mask, (c) brain region
extracted for the PD, T1w and T2w, respectively from the

first line

The generalization investigate the connection between the
four neighbours pixels of a region intensity. Qualitative and
quantitative results on synthetic and real MR images data
illustrate a higher robustness to brain region segmentation and
extraction on three modalities T1-weighted, T2-weighted and
Proton density on both normal and abnormal slices.
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