
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

848

 

 

 
Abstract—This paper evaluates the accrual based scheduling for 

cloud in single and multi-resource system. Numerous organizations 
benefit from Cloud computing by hosting their applications. The 
cloud model provides needed access to computing with potentially 
unlimited resources. Scheduling is tasks and resources mapping to a 
certain optimal goal principle. Scheduling, schedules tasks to virtual 
machines in accordance with adaptable time, in sequence under 
transaction logic constraints. A good scheduling algorithm improves 
CPU use, turnaround time, and throughput. In this paper, three real-
time cloud services scheduling algorithm for single resources and 
multiple resources are investigated. Experimental results show 
Resource matching algorithm performance to be superior for both 
single and multi-resource scheduling when compared to benefit first 
scheduling, Migration, Checkpoint algorithms. 
 

Keywords—Cloud computing, Scheduling, Migration, 
Checkpoint, Resource Matching.  

I. INTRODUCTION 

LOUD computing is an upcoming technology. To 
increase working in cloud computing environments 

efficiently, job scheduling is performed to gain maximum 
profit [1]. Cloud computing is based on some attributes, 
massive scalability, multi-tenancy (shared resources), 
elasticity, pay as you go, resources self-provisioning, security 
assessment, policies, and physical security. It makes advances 
in processors, disk storage, virtualization technology, 
broadband Internet connection, and fast servers to make the 
cloud a compelling solution.  

The job scheduling algorithm’s advantage is achieving high 
performance computing and best system throughput [2]. 
Conventional job scheduling algorithms cannot ensure 
scheduling in cloud environments. Task scheduling is 
classified into 2 categories: preemptive scheduling and non-
preemptive scheduling. Under non-preemptive scheduling, a 
higher priority task is scheduled after completion of current 
task. A scheduling discipline is non-preemptive when once a 
process is given to a CPU it cannot be taken away.  

Short jobs wait for longer jobs in non-preemptive system, 
but overall treatment of processes is fair. Non-preemptive 
scheduling algorithms are not difficult to implement and 
exhibit lower overhead at run-time. Non-preemptive 
scheduling on a uni-processor ensures exclusive access to 
shared resources and data, eliminating need for 
synchronization and its overhead [3]. Scheduling tasks without 

 
R. Santhosh is Research Scholar, Karpagam University, Tamilnadu, India 

(e-mail: cse.r.santhosh@gmail.com).  
T. Ravichandran is Principal, Hindusthan Institute of Technology, 

Tamilnadu India.  

preemption is a theoretical basis for general tasking models 
including shared resources. 

Response times are predictable as incoming high priority 
jobs cannot displace waiting jobs in non-preemptive systems. 
In such scheduling, a scheduler executes jobs in 2 situations: 
When a process switches from running state to waiting state 
and when a process is terminated [4], [5]. Non-preemptive 
scheduling has advantages of accurate response time analysis, 
implementation ease, no synchronization overhead, and 
reduced stack memory needs.  

Non-preemptive scheduling is used in lightweight multi-
tasking kernels and has been shown to be beneficial in 
multimedia applications. For scheduling of real time tasks, 
Rate Monotonic and Earliest Deadline First (EDF) are two 
well-known scheduling algorithms under which execution of 
tasks is based on its period of arrival or deadline as well [15]. 
Rate Monotonic algorithm works with Static Priority 
Scheduling (offline tasks), and EDF algorithm is with 
Dynamic Priority Scheduling (online tasks).  

The arrival of tasks in a particular system can be periodic, 
aperiodic or sporadic. Mostly systems set aside the arrival of 
tasks periodically because the period of task arrival is fixed, 
and these tasks are able to meet their respective deadline. A 
checkpoint is a local state of a job saved on stable storage 
[16]. By periodically executing the checkpoint, status of a 
process at consistent intervals can be saved. If there is a 
failure, computation can be resumed from the earlier 
checkpoints, thus, avoiding restarting execution from the 
beginning.  

Rollback recovery is the process of restarting computation 
by going back to a consistent state. In cloud computing 
environment, as the nodes in data centers do not share 
memory, it is required to transfer load of failed node to 
different nodes in case of any sort of failure. In this work, the 
task migration based scheduling and checkpoint based 
scheduling are investigated for scheduling on multiple 
resources and compared with Earliest Deadline First 
Algorithm. In this paper, Section II reviews related work; 
Section III explains methods used for scheduling. Section IV 
discusses experimental results for scheduling with a single 
processor and for 4 machines. Section V concludes the work. 

II. LITERATURE SURVEY 

The problem of scheduling checkpoints of sequential jobs in 
a Desktop Grids context including volunteered distributed 
resources was studied by [6]. A checkpoint scheduling 
algorithm provably optimal for discrete time when failures 
obey any general probability distribution was crafted. 

Accrual Based Scheduling for Cloud in Single and 
Multi Resource System: Study of Three Techniques 

R. Santhosh, T. Ravichandran 

C 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

849

 

 

Simulations with parameters based on real-world systems 
showed the optimal strategy scales and outperformed other 
strategies regarding check pointing costs and batch completion 
times. 

An Event Based Check-pointing tool (EBC), where user’s 
checkpoint and restart running programs in cloud systems 
introduced by [7] is based on event-driven architecture and 
integrated into cloud infrastructures like OpenNebula easily. 
EBC supports sequential programs and MPI programs. Also, 
any C&R included in MPI libraries was reused in EBC and is 
independent of MPI library versions. EBC is a tool which 
supports migration and scheduling in cloud systems. 

A new scheduling approach to provide a solution for online 
scheduling problem using IaaS model offered by cloud 
computing was presented by [8]. The task in traditional 
approaches is scheduled non- preemptively with 2 types of 
Time Utility Functions (TUFs) - profit time utility function 
and penalty time utility function. A task with highest expected 
gain is executed. A preemptive online scheduling algorithm 
for cloud computing environment was proposed to minimize 
response time and to improve task efficiency in the new 
approach. When a task misses its deadline, it is sent to another 
virtual machine thereby improving overall system 
performance and increasing total utility. Simulation results 
outperformed conventional scheduling algorithms like EDF 
and a similar model based earlier scheduling approach. 

A Migration-based Elastic Consolidation Scheduling 
(MECS) mechanism to automate elastic resource scaling for 
cloud systems was proposed by [9]. Different from earlier 
researches, dynamic workload fluctuation and Virtual 
Machine (VM) migration overhead were considered. An 
online resource demand predictor was developed - an 
ARIMA-based VM resource demand state predictor - achieved 
adaptive resource allocation for cloud applications. A 
migration-based elastic consolidation scheduling heuristic 
dynamically consolidated VMs with adaptive resource 
allocation to reduce number of physical machines. 
Experiments showed that the new scheduling realized elastic 
resource allocation with acceptable effect on SLAs. 

Two exact algorithms for energy efficient VMs scheduling 
in cloud data centers was presented by [10]. Energy aware 
allocation and consolidation modeling to reduce overall 
energy consumption resulted in combining optimal allocation 
algorithm and a consolidation algorithm relying on VMs 
migration at service departures. The new migration goes 
beyond current state of the art reducing the number of 
migrations for consolidation and energy consumption in one 
algorithm with a set of valid inequalities and conditions. 
Results showed benefits of combining allocation and 
migration algorithms demonstrating their ability to achieve 
huge energy savings while maintaining feasible convergence 
times compared to a best fit heuristic. 

A comprehensive availability model for 2 different types of 
rejuvenation scheduling based on live migration mechanism, 
one with test before migration, and other without was 
proposed by [11]. Five scenarios were evaluated with distinct 
time intervals for triggering rejuvenation. The goal is to 

explain benefits from using this rejuvenation technique, and 
understanding the differences between both approaches. 
Results showed that use of a schedule with a checking 
mechanism before rejuvenation ensures great system 
availability improvement. 

III. METHODOLOGY 

In this section, task migration algorithm, checkpoint 
algorithm, and the task scheduling algorithm is briefly 
discussed. All the techniques are accrual based techniques, 
and hence the utility function becomes the most important 
Quality of Service parameter. 

A. Task Migration 

Migration from source processors to destination processors 
increases system efficiency. Migration algorithms impact 
system performance greatly [12]. Task Migration time from 
source sub network to destination sub network and task delay 
time are important criteria for efficiency assessment. Task 
Migration Algorithms are [13]:  
Step1. Migration request is made to remote node.  
Step2. Detach task from source node and place it in migrating 

state.  
Step3. Communications are redirected temporarily.  
Step4. Processing states are pulled out from source node.  
Step5. Processing states are moved to remote node.  
Step6. Enable communication channels when migration is 

completed at remote node. 

B. Checkpoint 

Checkpoints are taken using fixed checkpoint interval 
method or variable checkpoint interval method. If using fixed 
checkpoint interval method, checkpoint interval size is same 
between two successive checkpoints and checkpoint interval 
size does not need to be uniform between two successive 
checkpoints in the incremental or variable checkpoint interval 
method [14]. A Fixed Checkpoint Algorithm is given below:  
Step1. Checkpoint intervals are allotted according to task size.  
Step2. Save task execution in derived disk space for every 

interval.  
Step3. Compute a task’s Fixed checkpoint intervals.  
Step4. Migrated task and pre-empted task restart execution 

from last saved checkpoint interval. 

C. Resource Matching Scheduling Algorithm 

Resource Matching (RM) Scheduling Algorithm 

The steps of RM algorithm are: 
Step1. Let N be arrived tasks in a normal queue.  
Step2. Sort tasks in normal queue according to priority.  
Step3. Checkpoint intervals are allocated for various tasks in 

normal queue using fixed checkpoint algorithm.  
Step4. Scheduler generates resource table using resource table 

generation algorithm.  
Step5. Every task in a normal queue is allocated with 

resources by scheduler using RM algorithm.  
Step6. Task is processed by the subsequent cases  



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

850

 

 

Case 1.  (Empty Migration Queue, Empty Normal Queue) 
Scheduler ready to process new task from normal 
queue only.  

Case 2.  (Empty Migration Queue, Load Normal Queue) 
Scheduler allows using all available resources to 
process task from normal queue.  

Case 3.  (Load Migration Queue, Empty Normal Queue) 
Scheduler allows using all available resources to 
process task from migration queue.  

Case 4.  (Load Migration Queue, Load Normal Queue) 
Scheduler allocates more systems to process normal 
queue and few systems to process migration queue.  

Step7. When a new task arrives with highest priority than 
executing tasks in normal queue, scheduler pre-empts 
executing task with less priority.  

Step8. Pre-empted task enters into normal queue again and is 
sorted according to priority.  

Step9. When pre-empted task comes for execution, it starts its 
execution from last check point interval saved.  

Step10.When an executing task misses deadline, scheduler 
migrates it to migration queue and starts execution 
from last check point interval saved. If task lacks 
resources allocated to migration queue, scheduler 
checks for available resources in systems allocated to 
normal queue. If task needs resources matched with 
systems, then scheduler places that task in normal 
queue.  

Step11.When scheduler places migrated task again in normal 
queue, the task is taken for execution only when 
resource needed for task in the normal queue are free.  

Step12.If task does not match with systems allocated to 
normal queue, scheduler checks for available resources 
allocated to migration queue. If task needs resources 
matched with systems, then scheduler places that task 
in migration queue.  

Step13.When scheduler places a task directly in migration 
queue due to insufficient resources allocated to normal 
queue, task gets allocated to a system immediately if 
free, otherwise executing task is pre-empted. It re-
enters into migration queue and is processed when 
normal task is executed. The pre-empted task starts 
execution from last check point interval saved.  

Step14.When a task awaits resources in normal and migration 
queues, scheduler allocates resources for subsequent 
tasks only if required resources are available to process 
it. 

IV. EXPERIMENTAL RESULTS 

The main goal of this work is to investigate the existing 
Task Migration and Checkpoint algorithm for multiple 
resources. Experiments were conducted in two scenarios, the 
first with single processor and the second scenario with two 
datacenter consisting of four virtual machines. Twenty-five 
runs were conducted each for Benefit first scheduling, 
Migration, Checkpoint, and RM methods. Figs. 1-3 show the 
results of single processor scheduling and Figs. 4-6 represent 
the four resource results. The parameters measured are the 
utility gain, the utility loss, and the total utility. Fig. 1 shows 
the utility gain function for all the four techniques.  

The RM method increased the utility gain by 10. 0928% 
when compared with Migration. The checkpoint method 
increased utility gain by 8.3255% than migration. Fig. 2 shows 
the utility loss function. 

The Checkpoint method decreased utility loss by 19.741% 
than migration method. The migration method decreased 
utility loss by 27.2472% than benefit first search method. Fig. 
3 shows the total utility function given by 

 

Total_utility=Utility_gain+Utility_loss  
 
Fig. 4 shows the utility gain when four resources are used. 

 

 

Fig. 1 Utility gain in single resource system 

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

U
ti

lit
y 

G
ai

n

Experiment run

Benefit First scheduling Migration Check point RM



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

851

 

 

 

Fig. 2 Utility Loss in single resource system 
 

 

Fig. 3 Total Utility in single resource system 
 

 

Fig. 4 Utility Gain in multi resource system 
 

The benefit first search method has lower utility gain of 
6.8983% when compared with migration method. RM method 
increased utility gain by 18.6437% when compared with 

migration method. Fig. 5 shows the utility loss. 
The migration method has higher utility loss of 19.9082% 

when compared with checkpointing method. RM method has 

0
50

100
150
200
250
300
350
400
450
500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

U
ti

lit
y 

L
os

s

Experiment run

Benefit First scheduling Migration Check point RM

-400

-300

-200

-100

0

100

200

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
ot

al
 U

ti
li

ty

Experiment run

Benefit First scheduling Migration Check point RM

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

U
ti

li
ty

 G
ai

n

Experiment run

Benefit First scheduling Migration Check point RM



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

852

 

 

lower utility loss by 41.0478% when compared with migration 
method. Fig. 6 shows the total utility. 

 

 

 

Fig. 5 Utility Loss in multi resource system 
 

 

Fig. 6 Total Utility in multi resource system  
 

V. CONCLUSION  

Cloud computing is a paradigm, having potential to reduce 
costs through optimization and increase operating/economic 
efficiencies. Cloud computing tasks are different from each 
other needing optimal execution time. Cloud scheduler assigns 
multiple users tasks to multiple virtual machines. A good 
scheduling algorithm assigns virtual machines optimally. In 
this work, four popular accrual based scheduling mechanisms 
were studied for multi resource cloud system. Experiments 
were conducted for four scheduling methods with single 
processor and with four VM. The utility gain, utility loss, and 
total utility are calculated, and the results compared with one 
another algorithm. From the results, RM method outperformed 
other methods.  

 

REFERENCES 
[1] Salot, P. (2013). A survey of various scheduling algorithm in cloud 

computing environment. International Journal of research and 
engineering Technology (IJRET), ISSN, 2319-1163. 

[2] Nikshape, S. S., & Deepak, S. S. Delivering Of Real Time Services 
through Internet Protocol Using Cloud Computing. 

[3] Jeffay, K., Stanat, D. F., & Martel, C. U. (1991, December). On non-
preemptive scheduling of period and sporadic tasks. In Real-Time 
Systems Symposium, 1991. Proceedings, Twelfth (pp. 129-139). IEEE. 

[4] Jejurikar, R. (2005, July). Energy aware non-preemptive scheduling for 
hard real-time systems. In Real-Time Systems, 2005.(ECRTS 2005). 
Proceedings. 17th Euromicro Conference on (pp. 21-30). IEEE. 

[5] http://www.personal.kent.edu/~rmuhamma/OpSystems/Myos/cpuSched
uling.htm 

[6] Bouguerra, M. S., Kondo, D., & Trystram, D. (2011, May). On the 
scheduling of checkpoints in desktop grids. In Cluster, Cloud and Grid 
Computing (CCGrid), 2011 11th IEEE/ACM International Symposium 
on (pp. 305-313). IEEE. 

[7] Nguyen, D., & Thoai, N. (2012, May). Ebc: Application-level migration 
on multi-site cloud. In Systems and Informatics (ICSAI), 2012 
International Conference on (pp. 876-880). IEEE. 

[8] Santhosh, R., & Ravichandran, T. (2013, February). Pre-emptive 
scheduling of on-line real time services with task migration for cloud 

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

U
ti

li
ty

 L
os

s

Experiment run

Benefit First scheduling Migration Check point RM

-500

-400

-300

-200

-100

0

100

200

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
ot

al
 U

ti
lit

y

Experiment run

Benefit First scheduling Migration Check point RM



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

853

 

 

computing. In Pattern Recognition, Informatics and Mobile Engineering 
(PRIME), 2013 International Conference on (pp. 271-276). IEEE. 

[9] Huang, Q., Su, S., Xu, S., Li, J., Xu, P., & Shuang, K. (2013, July). 
Migration-based elastic consolidation scheduling in cloud data center. In 
Distributed Computing Systems Workshops (ICDCSW), 2013 IEEE 
33rd International Conference on (pp. 93-97). IEEE. 
Ghribi, C., Hadji, M., & Zeghlache, D. (2013, May). Energy efficient 
VM scheduling for cloud data centers: exact allocation and migration 
algorithms. InCluster, Cloud and Grid Computing (CCGrid), 2013 13th 
IEEE/ACM International Symposium on (pp. 671-678). IEEE. 

[10] Melo, M., Araujo, J., Matos, R., Menezes, J., & Maciel, P. (2013, 
October). Comparative Analysis of Migration-Based Rejuvenation 
Schedules on Cloud Availability. In Systems, Man, and Cybernetics 
(SMC), 2013 IEEE International Conference on (pp. 4110-4115). IEEE. 

[11] Shamsinezhad, E., Shahbahrami, A., Hedayati, A., Zadeh, A. K., & 
Banirostam, H. (2013). Presentation Methods for Task Migration in 
Cloud Computing by Combination of Yu Router and Post-Copy. 

[12] Santhosh, R., & Ravichandran, T. (2014). Task Scheduling for Online 
Real Time Services with Multiple Resources Using RM Algorithm for 
Cloud Computing. Australian Journal of Basic & Applied Sciences. 

[13] PM, M. S., & Venkatesh, K. A New Optimal Checkpoint Restart Model. 
[14] Sharma, R. (2012, August). Task Migration with EDF-RM Scheduling 

Algorithms in Distributed System. In Advances in Computing and 
Communications (ICACC), 2012 International Conference on (pp. 182-
185). IEEE. 

[15] Singh, D., Singh, J., & Chhabra, A. (2012). Evaluating overheads of 
integrated multilevel checkpointing algorithms in cloud computing 
environment”. IJ Computer Network and Information Security, 5, 29-38. 

 
 
 
R. Santhosh is Research Scholar, Karpagam University. He is currently 
pursuing his doctorate in India.  
 
T. Ravichandran is Principal, Hindusthan Institute of Technology, India.  
 

 


