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Abstract—Cholera is a disease that is predominately common in 
developing countries due to poor sanitation and overcrowding 
population. In this paper, a deterministic model for the dynamics of 
cholera is developed and control measures such as health educational 
message, therapeutic treatment, and vaccination are incorporated in 
the model. The effective reproduction number is computed in terms 
of the model parameters. The existence and stability of the 
equilibrium states, disease free and endemic equilibrium states are 
established and showed to be locally and globally asymptotically 
stable when R0 < 1 and R0 > 1 respectively. The existence of 
backward bifurcation of the model is investigated. Furthermore, 
numerical simulation of the model developed is carried out to show 
the impact of the control measures and the result indicates that 
combined control measures will help to reduce the spread of cholera 
in the population. 

  
Keywords—Backward bifurcation, cholera, equilibrium, 

dynamics, stability. 

I. INTRODUCTION 

HOLERA continues to be a global threat to public health. 
It is a major public health problem in many developing 

countries [1]. Cholera, an acutely dehydrating diarrhoea 
disease that can rapidly kill its victims, is caused by vibrio 
cholerae, a gram-negative bacterium [2]. Choleragenic v. 
cholerae 01 and 0139 are the only causative agents, usually 
associated with explosive outbreaks and pandemics with 
propensity to spread across continents [3]. It is a disease 
associated with poverty and poor environmental sanitation and 
infects everybody. This is because the medium of transmission 
is accessible to all [4]. Cholera is transmitted through 
ingestion of contaminated water and food from sewage or via 
contact with excretas of an infected person. Infected persons 
over time have symptoms such as watery diarrhoea 
accompanied by vomiting which can quickly lead to 
dehydration. If not treated immediately, it can progress to 
shock and death within hours. As of 2013 the outbreak of 
cholera causes about 120,000 deaths annually worldwide of 
which 43% were reported from Africa [5]. Whilst in Nigeria, 
it has been endemic with yearly outbreaks since first outbreak 
was reported in the year 1970. With each outbreak, 
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epidemiological evidence usually indicates that the entire 
country is at risk especially children between 1 – 5 years [6]. 
Improving global access to water, sanitation, and hygiene is a 
critical step to eliminating African’s cholera burden. This will 
be achieved if there is proper health education and awareness 
of the infection through radio, word-of-mouth communication, 
television, social media and posters [7].  

Mathematical models are important tools in analysing the 
spread and control of infectious diseases. This started as far 
back as 1760 when Daniel Bernoulli developed a model for 
smallpox [8]. Since then, many mathematical models have 
been developed for many infectious diseases including 
cholera. Several researchers have continuously researched on 
how to reduce cholera infection using mathematical models by 
incorporating control measures such as hygiene consciousness 
[9], education and chlorination [10], vaccination [11], 
vaccination, therapeutic treatment, and water sanitation [12] 
and so on. All of these researchers in one way or the other 
have shown that the transmission of cholera could be 
controlled based on their results.  

To this end, this study seeks to investigate analytically the 
dynamics of cholera by integrating health educational 
message, therapeutic treatment, and vaccination as controls in 
order to halt further spread of the infection. This will be 
accomplishes by extending the work by [12]. 

II. MODEL FORMULATION 

Cholera model classifies the population into human  
and pathogen populations . Human population  is 
subdivided into Susceptible , Infected , and 
Recovered  classes with natural mortality rate  in all 
classes while  is the cholera induced death rate in the 
infected class. The pathogen population  is denoted by 

 as the concentration of pathogen in the water sources 
(contaminated water). The model assumed that susceptible 
individuals are recruited at the rate  and become infected 
through contact with stool/faeces of the infected human at the 
rate  or via contact with environment contaminated by 

untreated water at the rate , where  and  are the 

contact rates for human to contaminated water and human to 
human interaction respectively. K is the concentration of 
pathogen in water that yields 50% chance of getting cholera 
and  is taken as the recruitment rate.  is the natural death 
rate of the pathogen. Furthermore, each infected individual 
contribute averagely to the pathogen population at the rate 

0, while susceptible individuals are vaccinated at the rate 
 and add to the recovery class. The infected individuals may 
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recover at the rate  depending on their immunity, nutrition 
and age [10].  is taken as the rate of therapeutic treatment 
given to the infected individuals in the hospital.  

Finally, 0 1 is a constant representing direct 
education on human terms of public health awareness. This 
parameter changes the behaviour of humans in order to 
maintain good sanitation and avoid contact with infected 
human and contaminated water sources.  

Based on the above assumptions, we obtain the following 
system of nonlinear ordinary differential equations for the 
dynamics of cholera; 

 

	 1  

 1 		(1) 

 

1  

 
The non-negative initial conditions of the model system (1) 

are 0 0, 0 0, 0 0, and 0 0. 

III. MODEL ANALYSIS 

We begin by showing that all feasible solutions are 
uniformly bounded in a proper subset of Ω Ω Ω . The 
feasible region Ω S, I, R ∈ R : S I R k ∪ Ω
B ∈ R : B k is positively invariant.  
Adding all the equations of the model system (1) gives  

 

. 
 

In the absence of the disease 0  as → ∞ where  
is a constant. Thus, (1) is both mathematically and 
epidemiologically well posed in the domain of Ω. We 
therefore restrict our analysis to the region Ω. 

We reduced the model equations (1) since  does not 
appear in other equations of the model. We have 

 

	 1  

 1 	    (2) 

1  

 
where   . 

A. Disease – Free Equilibrium (DFE) 

The disease – free equilibrium is the equilibrium when there 

is no cholera in the population. At equilibrium point, 
dt

0. We have the following system of equations (3) to be 

solved simultaneously for S, I, B,  
 

1 0 

 1 0							     (3) 

1 0 

We have  
0 

 
From which we obtain  

 

 
Thus, the disease – free equilibrium  is given as   

 

 , , , 0,0 	   (4) 

B. Local Stability of the Disease – Free Equilibrium  

We first compute the effective reproduction number  by 
using next generation method described by [13] since the 
stability of DFE will be in terms of . 

Here, the associated matrix  is the rate of appearance of 
new infection in compartment 	and matrix  is the transfer of 
infections from one compartment  to another. 

 

1
1

0 0
 

 
μ 0

1
 

 
It follows that the effective reproduction number  is given 
by; 

  

          (5) 

 

where  and  is the spectral radius of the matrix 

. 
The effective reproduction number is the mean number of 

new infection generated by a single cholera infected individual 
in a population where vaccination, therapeutic treatment and 
education are used as control strategies. 
Theorem 1.  The disease – free equilibrium  of the reduced 
model system (2) is locally asymptotically stable if 1 
and unstable if 1. 

The Theorem 1 is proved using linearization method. The 
Jaobian matrix associated with the reduced model system (2) 
at the DFE 	 , 0,0  is given as  

 

 

1

0 1

0 1

  (6) 

 
The characteristics equation corresponding to  is given 

as 
 

 1

1 0 
 

This implies that  
 

0  or  	 0 
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That is 
 

 1 1

0            (7) 
 
where  

1  

1
1

 

 
Using Routh–Hurwitz criteria,  is locally asymptotically 

stable if 0, 0 and 0 implies that 0. We 
have 

 

1
1

0 

 
and this gives  
 

1																										(8) 

 
Comparing (5) with (8), we have 1. This proves the 

Theorem 1. 

C. Existence of Endemic Equilibrium 

The endemic equilibrium point  is a steady state solution 
where cholera persists in the population. For the existence and 
uniqueness of endemic equilibrium ∗, ∗, ∗ , its 
coordinates will satisfy the conditions; ∗, ∗, ∗ 0, 
where ∗ 0, ∗ 0, ∗ 0. The endemic equilibrium point 

is obtained by setting model system equation (2) to zero, 
and is given as 

 
∗

∗

, ∗
∗

∗   and 

  
∗

∗

 . 

 
Substituting ∗ in ∗ and simplify gives ∗, the roots of the 

following quadratic equation 
 

 ∗ ∗ 0        (9) 
 
where  

1  
1
1  

1  
 

It is important to note that 0. Using Descarte’s rule of 
signs to determine the sign of ∗ in (9), a unique positive 
endemic equilibrium ∗ exists for any sign of  if 1. 
When 1, 0, and 4 0, we have precisely two 
endemic equilibria. This may lead to existence of backward 
bifurcation if we set the discriminate 4 0 and solve 
for the critical value denoted by  of . That is  

 

1
4

 

 
Thus, it can be shown that backward bifurcation would occur 
for the value of  such that 1. 

D. Bifurcation Analysis 

Some epidemiological models can be bi-stable due to 
vaccination or immunity [15], [16] such that 1 is not a 
sufficient condition to eradicate the disease that is endemic in 
the population but adequate for avoiding an epidemic caused 
by few infectives introduced initially in the population [17]. 
Some models [18], [19] being bi-stable is due to the change of 
stability that occurs at the bifurcation point (that is, a point 
where the leading eigenvalue of the Jacobian matrix at the 
DFE is zero) whenever 1. The bifurcation analysis is use 
to prove the bi–stable state. There are forward and backward 
bifurcations depending on the direction of the bifurcation 
parameter . When the bifurcation is forward, it implies that 
disease free equilibrium is locally asymptotically stable for 

1 and there is no cholera in the population and also 
endemic equilibrium is locally asymptotically stable for 

1. Backward bifurcation occurs when the endemic 
equilibrium exists for 1 and disease free equilibrium 
may exists when 1. 

Centre manifold theory [20] is used to analyse the 
bifurcation condition of the dynamics of cholera (2) and its 
local asymptotic stability of endemic equilibrium near 1. 
Theorem 2.  Centre manifold theory [20]. Consider a general 
system of ODEs with the parameter β:  

 

,    (10) 

 
: →  and ∈ 	 	  

 
where 0 is an equilibrium point for the system (10) for all 
values of the parameter β, that is f 0, β ≡ 0 for all β and  

1. A D∗f 0,0 0,0  is the linearization matrix of the 

system (13) around the equilibrium point 0 with β 
evaluate at 0. Zero is a simple eigenvalue of A and all 
other eigenvalues of A have negative real parts.  

2. Matrix A has a right eigenvector w and a left eigenvector 
 corresponding to the zero eigenvalue. 

Let f  be the k  component of f and  
 

a v w w
∂ f
∂x ∂x

0,0
, ,

 

0,0
,

 

 
Then the local dynamics of the system (10) around the 
equilibrium point 0 is totally determined by the signs of a and 
b. 

i. a 0, b 0 when β 0 with |β| ≪ 1, 0 is locally 
asymptotically stable, and there exists a positive unstable 
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equilibrium; when 0 ≪ 1, 0 is unstable and there 
exists a negative and locally asymptotically stable 
equilibrium. 

ii. a 0, b 0, when β 0 with |β| ≪ 1, 0 unstable; when 
0 ≪ 1, asymptotically stable, and there exists a 
positive unstable equilibrium; 

iii. 	a 0, b 0, when β 0 with |β| ≪ 1, 0 unstable; and 
there exists a locally asymptotically stable negative 
equilibrium; when 0 ≪ 1, 0 is stable and a positive 
unstable equilibrium appears; 

iv. a 0, b 0, when β 0 changes from negative to 
positive, 0 changes its stability from stable to unstable. 
Corresponding to a negative unstable equilibrium 
becomes positive and locally asymptotically stable. 

Particularly, if a 0 and b 0, then a forward bifurcation 
occurs at β 0. 

Applying the Theorem 3, we let 
 

,			 ,			 , 
 
The reduced model (2) becomes: 
 

 	 1      (11) 

1  

1  

 
The Jacobian matrix  of the model 2  at the disease-

free equilibrium is defined in (6). Taking  and 
, where  is chosen as the bifurcation parameter that occurs 

at 1, and solve for . We have  
  

1 1
			 1 

 
from which we obtain 
 

1 1
 

 
The linearized system of the system 11  with  and 

 at 1 has a simple zero eigenvalue and all other 
eigenvalues are negative real part. 

Applying the centre Manifold theory, let the right 
eigenvector of the Jacobian matrix  when 1 be 
given by , , . We calculate the right eigenvector 

 by multiplying this vector with the Jacobian Matrix (6) and 
equating to zero. We have  

 

,				
1

	 

 
The left eigenvector of the Jacobian  associated with 

the zero eigenvalue is given by , , . Transposing 
Jacobian  first and multiply by 	, we have 

 

0,
1

 

 
Using the property . 1, we obtain 
 

 	   (12) 

 
This implies that 0 if 0. 

E. Computations of  and  

The associated non-zero partial derivatives of , ,  
at DFE  for model (11) are given by 

 

 1 	, 	 , 	 

 
Since 0, it follows that 
 

 

 
		

 

 
or 

1 1

1
 

 
Using (12), we see that 0 if 0 and 0 if 

0. 
For , we have the non-zero partial derivatives of 
, ,  at DFE  for model (11) given by 

 
1

		,				
1

 

  
The value of  can be obtained from 
 

 

 
Thus,  

1 1
0 

 
since 0 and 0 or 0 subject to whether 0 or 

0. We have the following theorem. 
Theorem 3.  The model (2) exhibits a backward bifurcation 
at R 1 if u 0 and a 0. If β 0, there exists a positive 
unstable endemic equilibrium point and when β changes from 
negative to positive, a positive stable endemic equilibrium 
point exists. Therefore, the endemic equilibrium point E  is 
locally asymptotically stable for R 1 but close to 1 when 
u 0 and a 0. 
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E. Global Stability of Disease – Free Equilibrium 

We analyse the global stability of disease-free equilibrium 
of the model equations (2) when the bifurcation is forward, 
since global stability does not exist for backward bifurcation. 

Using the approach by [14], the model equations (2) can be 
rewritten as 

 

F , ,		                              (13) 
 

G , , G , 0	                     (14) 
 
where ∈ 	 S 	denotes the number of uninfected 
individuals (susceptible class) and ∈ 	 I, B 	denotes the 
number of infected compartments (infected and pathogen 
classes).  

The condition for global stability for E 	 S , 0, 0  is given 
by 

H1. For  F , , ∗ is globally asymptotically stable, 

H2. G , , ,			 , 		 0				 	 , ∈ Ω	 where 
, 0  is an M-matrix (i.e. the off diagonal 

elements of  are nonnegative) and Ω is the region where 
the model equations makes epidemiological meaningful.  

If the model equations (2) satisfies the conditions (13) and 
(14) then the Theorem 4. holds: 
Theorem 4.  The disease-free equilibrium E 	 S , 0, 0  is 
globally asymptotically stable if 1 and that conditions 
H1 and H2 are satisfied.  

From condition H1 , we have 

  

	  

 
which gives 

0  

 
Regardless of the values of initial conditions, 0 , 0 , and 
0 , →   as 	 → ∞.  So E  is globally asymptotically 

stable.  
From condition H2, we have 

  

1
1

1
 

and , 1

0
 

 
We see that matrix  is an  since all its off – 

diagonal elements are non – negative and also , 0 since 
 for all , ∈ Ω. Therefore, the condition H2 can be 

written as 
  

                                    (15.a) 
 

The eigenvalues of  is given by solving this 
characteristics equation (15.b) 

1 1

0											(15.b) 
 
Equation (15.b) is the same as (7).  

It follows that for 1, the inequality (15) is stable and it 
results as → ∞, , → 0,0 . Then, the DFE E 	 S , 0, 0  
is globally asymptotically stable if 1 with 0 and 

0.  

F. Global Stability of the Endemic Equilibrium  

In this section, we study the global stability of the endemic 
equilibrium state of the cholera model (2) if the bifurcation is 
forward. The following theorem provides the global property 
of the endemic equilibrium of the cholera model (2) when 

0 and 0 
Theorem 5.  The endemic equilibrium ∗, ∗, ∗  of 
the model (2) is globally asymptotically stable if 1. 
Proof. To prove global stability of , we apply [21] approach 
by constructing the following Lyapunov function 

∗ ln ∗ ln ∗ ln   
The time derivative of  is given by  
 

1
∗

1
∗

1
∗

 

1
∗

1  

1
∗

1  

1
∗

1 	           (16) 
 
The model (2) satisfy the following relations at the 

equilibrium point  ∗, ∗, ∗ 0: 
 

1
∗

∗
∗ ∗ ∗	

∗ 														
∗

∗ 													

        (17)            

 
Substituting system (17) in (16), we obtain 
 

1
∗

1 ∗

∗ ∗

∗
∗ ∗

∗

1
∗

1

∗

∗ ∗

∗
∗ ∗

1 ∗ 1
∗

 

 
Upon simplification, we get 
 

 
∗

1 , ,    (18) 
 

where   ∗ , ∗ , ∗  and 
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 , ,
∗ ∗

∗ ∗ 1 ∗ 2

∗ ∗ 1
∗ ∗

∗ ∗
∗

		 ∗ ∗ 1 ∗ 1 										  (19) 

 
In order to determine  and , we set the coefficients of  

and  of (19) equal to zero and solve the result equations. We 
obtain, 

 

1 ,  
∗ ∗

∗ ∗ ∗ . 

 
Substituting  and  in (19) and simplifying, we have  

 

, ,
∗ ∗

∗ ∗ 3
1

 

∗ 3 		                      (20) 

 
Using arithmetic and geometric mean inequality, we have 
 

3   and   3. 

 

This implies that , , 0. Therefore, 0 in Ω. The 

equality 0 holds only for 1 for which ∗, 
∗, ∗. Thus, the model system (2) has a unique 

endemic equilibrium point  which is globally asymptotically 
stable if  1 as well as 0 and 0 using the 
LaSalles invariance principle [22].  

IV. NUMERICAL SIMULATIONS 

In this section, we carry out numerical simulations for 
model equations (2) in order to validate our analytical results. 
This is achieved by using a set of model parameters whose 
values are mainly from literature along with assumed values 
so as to have realistic numerical results.  Table I presents the 
model parameter values and respective sources. 

Figs. 1 and 2 show the impact of vaccination, therapeutic 
treatment, and education on the infected and pathogen 
populations. The infected and pathogen populations decrease 
as the controls are implemented together. Combined 
implementation of therapeutic treatment and vaccination 
substantially reduces both infected and pathogen populations 
but still leave residues with potential to cause frequent new 
outbreaks. This may explain why cholera is endemic in many 
developing countries. It is only when the three controls are 
carried out together that a disease free equilibrium may be 
achieved.  

Figs. 3 and 4 reveal how education can reduce the infected 
and pathogen populations. As the rate of education increases, 
the infected and pathogen population reduce. This simply 
means that vaccination and therapeutic treatment are not 
enough to eliminate the cholera infection in the population. 
People need to be aware of the infection especially those in 
rural areas and urban slums. This can be achieved through 

education of the populace on hygiene consciousness [9], 
through radio, word-of-mouth communication, television, 
social media and posters [7]. 

 
TABLE I 

MODEL PARAMETER VALUES 
Parameter Value Source 

10000 [12] 
43.5  ,, 
0.15/  ,, 
0.0005/  ,, 

 
10

 ,, 

5  ,, 
 1000000 /  ,, 

0.02	  [23] 
0.015 ,, 
0.2 Assumed 

0.3/  [10] 
0.2 Assumed 

V. CONCLUSION 

In this study, a mathematical model of cholera has been 
proposed in order to assess the impact of vaccination, 
therapeutic treatment, and health educational message on the 
transmission dynamics of cholera infection in a varying 
population. The disease free and endemic equilibria are proved 
to be locally and globally asymptotically stable if 1 and 

1 respectively provided 0 and 0. In addition, a 
backward bifurcation exists where the effective reproduction 
number is equal to unity, 1 if 0 and 0. 
Numerical simulation is carried out to support the analytical 
results. The result shows that the disease free equilibrium may 
be attain if the controls are implemented together. 

 

 

Fig. 1 The impact of vaccination, therapeutic treatment and health 
educational message on infected population 
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Fig. 2 The impact of vaccination, therapeutic treatment and health 
educational message on pathogen population 

 

 

Fig. 3 The impact of health educational message on infected 
population 

 

 

Fig. 4 The impact of health educational message on infected 
population 
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