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Abstract—Radiative heat transfer in participating medium was 

carried out using the finite volume method. The radiative transfer 
equations are formulated for absorbing and anisotropically scattering 
and emitting medium. The solution strategy is discussed and the 
conditions for computational stability are conferred. The equations 
have been solved for transient radiative medium and transient 
radiation incorporated with transient conduction. Results have been 
obtained for irradiation and corresponding heat fluxes for both the 
cases. The solutions can be used to conclude incident energy and 
surface heat flux. Transient solutions were obtained for a slab of heat 
conducting in slab and by thermal radiation. The effect of heat 
conduction during the transient phase is to partially equalize the 
internal temperature distribution. The solution procedure provides 
accurate temperature distributions in these regions. A finite volume 
procedure with variable space and time increments is used to solve 
the transient radiation equation. The medium in the enclosure 
absorbs, emits, and anisotropically scatters radiative energy. The 
incident radiations and the radiative heat fluxes are presented in 
graphical forms. The phase function anisotropy plays a significant 
role in the radiation heat transfer when the boundary condition is 
non-symmetric.

Keywords—Participating media, finite volume method, radiation 
coupled with conduction, heat transfer.  

I. INTRODUCTION

N many combustion devices, radiant heat transfer are the 
predominant mode of energy transfer. Authentic solutions of 

the performance of these devices are strongly linked to the 
solutions of the radiative transport equations. Although a 
variety of computational tools have been proposed in the past 
several decades, recent advances in combustion modeling 
have re-emphasized several essential needs for radiative heat 
transfer calculation. Modern numerical modeling schemes 
require calculations tools that are efficient and integrate easily 
with the other transport equations based on finite volume 
approaches. In large scale industrial and utility pulverized coal 
combustion furnace, heat transfer is mainly by radiation. 
Radiation is attenuated by absorbing gases such as water 
vapour, carbon-di-oxide and by suspended particulates (coal, 
char, ash and soot).Accurate simulation of radiative processes 
requires analysis of combined absorption and scattering of 
radiant energy. An extensive survey of multi-dimensional 
radiative models has been reported elsewhere. Exact 
formulations for absorbing, emitting and scattering media in 
an enclosure have been documented. In conjugate mode 
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problems the FVM for the radiative heat transfer utilizes the 
same concept as that of the FVM of the CFD, its 
computational grids are compatible with the FVM grids that 
are used in the solution of the energy and momentum 
equations [1], [2]. 

The finite volume method (FVM) [3], [4] is widely used to 
compute the radiative information in radiative heat transfer. 
The discrete ordinate method suffers from the false-scattering 
[3] and this difficulty we did not face in FVM. In this method, 
the ray-effect is also less noticeable [3]. Using the 
conventional CFD based methods such as the FDM and the 
FVM for solving the energy equations of the combined 
radiation, conduction and convection heat transfer problems, 
strength of the FVM in providing radiative information is well 
employed [3], [4]. Thus, even though the FVM for the 
radiative heat transfer is a new method, it is more popular than 
the DTM, and the DOM. The present article is thus proposed 
at extending the application of the FVM to relatively new 
problems. To provide the radiative information required for 
the energy equation, there are many methods such as discrete 
ordinates method, collapsed dimension method, discrete 
transfer method, FVM and many more. Among all the 
available methods FVM is the most robust of all .The discrete 
ordinate method (DOM) [5]-[10] is one of the oldest and still 
the most extensively favored methods by physicists and 
engineers. Heat-transfer problems involving radiation are 
computationally expensive. Among all the modes of heat 
transfer, calculation of radiative information is the most time 
consuming. The efforts have been directed towards developing 
new radiative transfer methods [5] as well as improving the 
computational efficiencies of the existing ones [11]-[19] so as 
to reduce the computational expense. 

The objective of the present work is to establish the 
compatibility of the FVM solution for the determination of 
radiative information. One other objective is also to see how 
the FVM performs against the radiation-conduction 
combination in which the RTE is solved using the FVM of 
radiative heat transfer and the conductive information is 
computed using the conduction equation. Towards this 
objective, transient conduction and radiation heat transfer 
problems in 1-D planar are examined. For different parameters 
like the scattering albedo, the conduction–radiation parameter 
and the boundary emissivity, results of the FVM are presented. 

A. Formulation of Radiative Transfer Equation 
The transient radiative transfer equation at any point P for 

direction s is given by  
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where superscript l represents the angular direction. Transient 
radiative transfer equation is being integrated over a one 
dimensional control volume, control angle and over a time 
interval from t to t+�t , the above equation can be discretized 
as follows 

1 ( )m m
x t t x t x

I Idtdxd dxd dt I S dxd dt
c t x

�
�	� � � �	� � �	�

� �
	� 	 � � � 	

� �
 
 
 
 
 
 
 
 
   (2) 

where �l
m is the modified extinction coefficient and Sl

m is 
modified source term and can be written as in (3a) and (3b) 
respectively. Control angle is elaborated as in (3c). 
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The subscript l has been dropped from the above equation 
for the compactness. The order of integration is chosen 
according to the nature of terms. The first term of left hand 
side can be discretized as 
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where Ip
0 shows the intensity at previous time step and Ip at 

present time step. Pursuing the discretization practice of Chai 
et al. [20], [21], the second term in the left hand side and the 
term of right hand side can be written as 
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where Ie and Iw are the intensities at east and west control 
volume faces. 
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Using the fully implicit scheme (5) can be written as 
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Integrating (6) over the time interval result in following 
equation 
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Combining (4), (6) and (7) gives 
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Intensity Ip and I0
p are the centre node intensity at the end 

and at the beginning of time step respectively. To relate the 
boundary intensities to the nodal intensity spatial differencing 
scheme are needed and one such available scheme is the step 
scheme. The detailed formulation is shown for control angles 
Dcx > 0 and the boundary intensities Ie and Iw  can be written as 
follows 
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Applying the step scheme  
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Here Sce+, Spe+, Scw+, Spw+ are the additional source terms for 
high   resolution scheme. The scattering phase function is 
described as  
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By solving (7) and (8), a final discretization equation (for 
Dcx > 0 ) can be reduced in a standard form of finite volume 
method as 

P P W Wa I a I b� �                (13) 

For the solution of (13) the initial intensity is prescribed 
according to initial boundary condition and the terms ap the
coefficient of discretization equation and b the source term in 
the discretization equation can be written in a discretized form 
as follows 
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The problem of TRTE coupled with conduction in a one 
dimensional slab investigated in this article. The one 
dimensional transient conduction equation which will be 
coupled by RTE is given by (15) 

2
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and the solution of conduction equation is expressed in terms of  
the error function given below in (16) 
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where erf is the error function,�t is the thermal conductivity of 
slab, t is time in seconds. T(x,t) is temperature in Kelvin, T0(x)
is temperature at previous time step.

II. PROBLEM DESCRIPTION

The finite volume method has been applied to a problem 
that involves one dimensional radiative heat transfer in a slab 
with absorbing, emitting, scattering media. The slab is 
maintained at cold temperature i.e. at 0 K and the space is 
divided into control volumes of unit depth in the x direction. 
At time t=0, the left boundary temperature is swiftly raised to 
an emissive power of value equal to Phi for all accompanying 
time. The medium has scattering coefficient and absorption 
coefficient of 0.5 each resulting in the extinction coefficient of 
one. Forty (40 polar and 1 azimuthal) control angles are used 
to discretize the angular space. The spatial domain is 
discretized into 100 uniform control volumes. According to 
initial conditions, and initial intensity field is imposed for the 

solving transient radiative transfer equation. The solution 
within each time step is converged when it satisfies the 
following condition 

0
P P
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III. RESULTS

A formulation of the finite volume method was proposed. 
After collapsing the radiative information to the 1-D solution 
plane, formulation procedure of the conduction equation was 
incorporated. The FVM is developed to study transient 
radiative transfer in one-dimensional (1D) anisotropic 
scattering, absorbing, and emitting medium. The transient 
formulation is feasible for both transient and steady-state 
radiative transfer. It is found that the present method is 
accurate and efficient. It is found that the ballistic component 
of the laser propagates with the speed of light in the medium, 
and its value is reduced dramatically with the advance of 
propagation. 

A. Variation of Heat Flux  
Heat flux is maximum at the hot surface and reduces with 

time because a thick medium absorbs nearly all the radiation. 
Transient radiative heat transfer is accompanied with transient 
conduction and the variation of heat flux along x coordinate is 
shown in Fig. 1, and the heat flux is maximum at the left 
boundary and reduces while radiation reaches the opposite 
wall (x=L) of the slab. Fig. 2 shows the variation of heat flux 
without conduction along x-direction. Due to back scattering 
the radiative heat flux near the hot surface reduces with time. 
The effect in increase of heat flux can be seen when 
conduction is incorporated with radiative properties. The 
effect of radiative energy is at its peak at the left boundary 
because it has been provided with an emissive power and the 
radiative energy decreases while reaching the extreme end of 
the slab. 

Fig. 1 Variation of heat flux with conduction with x-axis 
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Fig 2 Heat flux without conduction along x-direction 

B. Variation of Incident Radiation Energy  
Incident radiation energy is accompanied with and without 

transient conduction, and the results are plotted in Figs. 3 and 
4. The incident radiation energy without conduction near the 
hot surface decreases with time due to back scattering effect 
before reaching steady state values. The variation of incident 
radiation energy without conduction along x coordinate is 
shown in Fig. 3. The incident radiation with conduction is 
maximum in the left boundary and decreases while reaching 
the extreme right of the slab at (x=L). Radiation coupled with 
conduction has been plotted in Fig. 4. The value of irradiation 
is more when radiation is coupled with conduction and 
incident radiation energy is at its peak at the left boundary and 
decreases while reaching the extreme right boundary. 

Fig. 3 Variation of incident radiation without conduction along x -
axis 

IV. CONCLUSION

A new finite volume method has been proposed for the 
prediction of radiative heat transfer that can be employed to 
predict radiative properties. The theory is advanced for an 
absorbing, emitting and scattering medium in an enclosure, 
but extensions to a broad bandwidth model and to include 
walls with other reflective properties are straightforward. The 
method has been demonstrated for a one-dimensional 

problem, for which benchmark solutions and other 
approximate solution are available. Boundary conditions are 
more strongly a function of the incident energy and not the 
emissive power therefore incident energy at boundary 
propagate in to boundary conditions and finally into field of 
radiant intensities. We get the increased value of heat flux and 
incident radiation energy when radiation is coupled with 
conduction as compared to radiative properties without 
conduction. 

Fig. 4 Variation of incident radiation energy with conduction along x-
direction
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