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Abstract—For a rigid body sliding on a rough surface, a range of 
uncertainty or non-uniqueness of solution could be found, which is 
termed: Painlevé paradox. Painlevé paradox is the reason of a wide 
range of bouncing motion, observed during sliding of robotic 
manipulators on rough surfaces. In this research work, the existence 
of the paradox zone during the sliding motion of a two-link (P-R) 
robotic manipulator with a unilateral constraint is investigated. 
Parametric study is performed to investigate the effect of friction, 
link-length ratio, total height and link-mass ratio on the paradox zone.  
 

Keywords—Dynamical system, friction, multibody system, 
Painlevé paradox, robotic systems, sliding robots, unilateral 
constraint. 

I.  INTRODUCTION 
URING sliding of a rigid body on a rough surface, many 
unexpected behaviors could occur. A famous simple 

example is the periodic detachment of a piece of a chalk when 
it is pushed over a blackboard [1]. Such phenomenon can be 
generalized to any rigid body or multibody system performing 
sliding on a rough surface with a unilateral constraint and the 
mass center trails the contact point as a pushing motion. This 
configuration could result in a range of uncertainty or non-
uniqueness of the solution of the equations of motion. 
Painlevé was the first who noticed this phenomenon and 
studied it [2], so it was named as Painlevé paradox [3]-[5]. He 
performed his studies on a planar rod slides on a rough 
surface. This model became the typical Painlevé model. The 
paradox in the typical Painlevé model may appear at a quite 
large value of the coefficient of friction, typically more than 
4/3 [6] which are, mostly, not found in practical applications. 
In the same time, the bouncing motion is one of the most 
important problems affecting multibody systems like robots, 
because it represents an obscure during their desired motion 
trajectories. What deteriorates the situation is the fact that the 
Painlevé paradox may appear for multibody systems at much 
smaller values of the coefficient of friction depending on the 
system configuration [4], [6]-[8]. Hence, the Painlevé 
phenomenon becomes very important in practical applications. 
Several problems can be named such as self-locking and 
bouncing motion related to the Painlevé paradox phenomenon 
[4]-[6], [9]-[11]. Reference [6] studied deeply the typical 
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Painlevé model and focused on the inconsistencies and the 
indeterminacies regions. He defined the motion modes and 
studied the transition from one mode to another one. 
Researchers in [4] and [11] made an experimental study on a 
two link robotic system with revolute joints in contact with a 
rough moving belt (to simulate the sliding motion) and they 
proved that the Painlevé paradox is a main reason for the 
undesired bouncing motion. They used the concept of 
tangential impact to solve the paradox analytically. Numerical 
simulation was carried out and numerical results showed good 
agreement with the experimental ones. A parametric study was 
performed [12] on a two link robot with revolute joints to 
study the effect of its configuration parameters on Painlevé 
phenomenon. The same authors in a following paper [13] 
suggested a method to escape Painlevé paradox by controlling 
the distance between the base of the robot and the ground. 
Reference [14] used the redundancy as a way to escape the 
paradox zone. He used a three-link redundant planar sliding 
robot with three actuated revolute joints to control the paradox 
and to escape its zone during motion. It can be noticed that 
these previous studies have considered either a single rod, as 
the typical Painlevé problem, or a two-link robot with revolute 
joints. Though in [14] a redundant robotic system with three 
links has been considered, however, all joints were revolute 
joints.  

In this work, a two-link robot with one prismatic joint and 
one revolute joint, or simply (P-R) robot is considered and 
analyzed. A derivation of the dynamical model of a general 
multibody robotic system with a unilateral constraint is 
introduced. Next, the condition for the Painlevé paradox, in 
the form of a paradox index, is determined and analyzed and 
different states of solution are illustrated. The case study of the 
two-link robotic system with one prismatic joint is 
investigated. Numerical and parametric studies, on the chosen 
model, are presented. The effect of link parameters (length 
ratio, mass ratio and total height), and friction on the 
dynamical behavior of the system are demonstrated. The 
results are represented graphically and discussed in detail.  

II. DYNAMIC SYSTEM MODELING 

For a planar robotic system in vertical plane, the end 
effector (contact point) is sliding on a rough horizontal 
surface. The coordinate components of the contact point (x, y), 
with respect to the inertial Cartesian coordinate frame Ox,y, can 

Effect of Robot Configuration Parameters, Masses 
and Friction on Painlevé Paradox for a Sliding Two-

Link (P-R) Robot 

Hassan M. Alkomy, Hesham A. Elkaranshawy, Ahmed S. Ashour, Khaled T. Mohamed 

D



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:9, No:10, 2015

1738

 

be expressed in terms of the generalized coordinates q(q1,q2,..., 
qn) as 
 

ݔ ൌ  ሻ (1)ࢗሺ	ݔ	
 

ݕ ൌ  ሻ (2)ࢗሺ	ݕ	
                                                                                                                  

In this case, the dynamical system can be obtained using 
Euler–Lagrange Equations, which produce the second order 
nonhomogeneous differential equation [12]:  
 

ሷࢗ	ሻࢗሺࢶ ൅ ,ࢗሺ࢛ ሶࢗ ሻ ൌ ࢝ ൅  (3) ࢌ
 
where, q: Vector of generalized joint coordinates, ࢶሺࢗሻ: 
Inertia matrix, ࢛ሺࢗ, ሶࢗ ሻ: Vector of Coriolis and centripetal 
forces, w: Generalized active forces, f : Generalized contact 
forces expressed with respect to joint coordinates. f can be 
written in terms of contact forces at the contact point as: 
 

JT ൤= ࢌ
௡ܨ
௧ܨ
൨ (4) 

                              
where, Fn is the normal component of the contact force, Ft  is 
the tangential component of the contact force, J  is the robot 
Jacobian, In sliding motion Ft can be written in terms of Fn as: 
 

௧ܨ 	ൌ 	െ	ܨߪߤ௡ (5) 
                              
where, σ is sliding direction indicator which is given by: 
 

ߪ ൌ
ሶݔ
ሶݔ| |

 (6) 

 
where, ẋ is tangential (sliding) component of the velocity of 
the contact point. The Jacobian can be defined from: 
 

ࢉ࢜ ൌ ሶࢗࡶ  (7) 
                                  
where, ࢉ࢜ is the velocity of the contact point, and 
 

ࡶ ൌ ൤ࢻ
ࢀ

ࢀࢼ
൨ (8) 

  
Finally, the equation of motion can be written as: 
 

ሷࢗ ൌ ࢝૚ሺିࢶ െ ሻ࢛ ൅ିࢶ૚(9) ࢌ 

III. PAINLEVÉ PARADOX MODELING 

Using (7) and (8), the velocity of the contact point can be 
expressed as: 

 

ࢉ࢜ ൌ ቂݕሶ
ሶݔ
ቃ ൌ ൤ࢻ

ࢀ

ࢀࢼ
൨ ሶࢗ  (10) 

 
where, ẏ is the normal component of the velocity of the 
contact point, it follows that: 
 

ሶݕ ൌ ሶࢗࢀࢻ  (11) 
 

Differentiating (11) and substitution (9) in the obtained 
equation leads to: 
 

ሷݕ ൌ ቂࢻሶ ሶࢗࢀ ൅ ࢝૚ሾିࢶࢀࢻ െ ሿቃ࢛ ൅ ሾିࢶࢀࢻ૚ሾࢻ െ  ௡ሿ (12)ܨሿࢼߪߤ
 
or 

ሷݕ ൌ െܣ ൅  ௡ (13)ܨܤ
 
where 

ܣ ൌ െࢻሶ ሶࢗࢀ െ ࢝૚ሾିࢶࢀࢻ െ  ሿ (14)࢛
 

ܤ ൌ ࢻ૚ሾିࢶ்ࢻ െ  ሿ (15)ࢼߪߤ
 
where B is called the paradox index. 

Physically, there are two possibilities for motion: either 
regular sliding ሺݕሷ ൌ 0				, ௡ܨ		 ൐ 0ሻ or flying	ሺݕሷ ൐ 0				, ௡ܨ		 ൌ 0ሻ. 
This physical condition can be expressed mathematically 
using the following complementary condition:  
 

ሷݕ ൒ 0 , ௡ܨ ൒ 0 ሷݕ			݀݊ܽ	 . ௡ܨ ൌ 0 (16) 
  

Mathematically, depending upon the signs of A and B, four 
possibilities of solution can be obtained from (13) as: 
a. The first possibility of solution occurs when A is positive 

and B is positive, which leads to:  
 

ሷݕ ൌ 0 , ௡ܨ ൌ
ܣ
ܤ
൐ 0			 (17) 

 
This possibility of solution represents the regular sliding of 

the end effector and it is the first accepted possibility of 
solution.  
b. The second possibility of solution occurs when A is 

negative and B is positive, which leads the solution to be 
as:  
 

ሷݕ ൌ െܣ ൐ 0 	, ௡ܨ		 ൌ 0 (18) 
 

This possibility of solution represents the case of flying 
(end effector leaves the surface) and it is the second accepted 
possibility of solution. 
c. The third possibility of solution is when A is negative and 

B is negative which leads the solution to be as: 
 

௡ܨ ൌ
ܣ
ܤ
൐ 0 , ሷݕ ൌ 0 ܽ݊݀ ௡ܨ ൌ 0			, ሷݕ ൌ െܣ ൐ 0  (19) 

 
In this case, the two accepted possibilities of solution 

(regular sliding and flying) are possible at the same time 
which is called indeterminacy or non-uniqueness. This 
possibility is rejected according to the mentioned physical 
condition and it is the first rejected possibility of solution. 
d. The fourth possibility of solution happens when A is 

positive and B is negative. In this case, if ݕሷ ൌ ௡ܨ	݄݊݁ݐ	0 ൌ
஺

஻
൏ 0 is a mathematical solution which means that the 

normal reaction is directed towards the rough surface 
which is rejected. If ܨ௡ ൌ ሷݕ	݄݊݁ݐ	0 ൌ െܣ ൏ 0 is another 
mathematical solution which means that the normal 
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component of acceleration is directed towards the rough 
surface which is rejected also. This case has no accepted 
solution which can be called inconsistency and this will 
be the second rejected possibility of solution.  

It is clear that, the two accepted possibilities of solution can 
be found only when B>0. In cases of B<0 the two rejected 
possibilities of solution will be found. The type of the two 
rejected possibilities of solution is dependent, also, on the sign 
of the term A. When A is negative, the non-uniqueness will be 
found, however, when A is positive the inconsistency will be 
found.  

Table I shows these cases according to the term A and term 
B signs. Hence, if B is positive a unique solution can be 
specified and contrarily, if B is negative, a range of 
inconsistency or non-uniqueness of solution can be occurred 
according to the sign of A. This phenomenon is called 
Painlevé paradox and we can define B as the paradox index. It 
is worth to notice from B-relation in (15) that B does not 
depend on the applied loads or motion velocities. It depends, 
only, upon the system configuration (orientation), mass 
properties (length, mass, specific mass), sliding direction, and 
coefficient of friction. Hence, for any specific coefficient of 
friction, a paradoxical configuration can be specified vice 
versa.  

 
TABLE I 

STATES OF SOLUTION 

 A B Solution State of solution 

௡ܨ + + 1 ൌ
ܣ
ܤ
൐ 0		, ሷݕ ൌ 0				 Sliding 

௡ܨ + - 2 ൌ 0			, ሷݕ ൌ െܣ ൐ 0				 Flying 

3 + - Φ 
Inconsistency  
(no solution) 

4 - - 
௡ܨ ൌ

஺

஻
൐ 0			, ሷݕ ൌ 0 and 

௡ܨ ൌ 0			, ሷݕ ൌ െܣ ൐ 0				. 
Indeterminacy 

(non-uniqueness) 

IV. CASE STUDY 

   Fig. 1 shows a two-link planar robotic system (two 
degrees of freedom) in the vertical plane, whose end effector 
C is sliding on a rough horizontal surface with coefficient of 
friction μ, and the first link can move vertically through the 
prismatic joint O. Assuming that l1, l2 are the lengths of the 
first and second links and m1, m2 are their respective masses. 
The vertical distance between the surface and the fixed 
prismatic joint is H. The motion parameters are the linear 
displacement d and the angular displacement θ which are 
chosen as the generalized coordinate q. The applied force F 
acts at the prismatic joint (O) and τ is the applied torque at the 
revolute joint.  

The kinetic energy of the robotic system is: 
 

ܶ ൌ
1
2
݉ଵ

ሶ݀ଶ ൅
1
8
݉ଶ݈ଶ

ଶߠሶ ଶ ൅
1
2
݉ଶ

ሶ݀ଶ െ
1
2
݉ଶ݈ଶ sin ሶߠߠ ሶ݀ ൅

1
2
ܫீ ଶߠሶ ଶ (20) 

 
The potential energy of the robotic system is: 

 

ܸ ൌ െ	݀ܨ ൅݉ଵ݃ ൬
݈ଵ
2
െ ݀൰ ൅ ߬ ቀ

ߨ
2
െ ቁߠ െ݉ଶ݃ ൬݀ ൅

݈ଶ
2
ݏ݋ܿ  ൰ (21)ߠ

 

 

Fig. 1 Two-link (P-R) planar robotic manipulator 
 
Consequently, using the model presented in Section II, the 

matrices and vectors in (9) are obtained as follows: 
 

ࢶ ൌ ൦
ሺ݉ଵ ൅݉ଶሻ െ

1
2
݉ଶ݈ଶߠ݊݅ݏ

െ
1
2
݉ଶ݈ଶߠ݊݅ݏ ൬

1
4
݉ଶ݈ଶ

ଶ ൅ ܫீ ଶ൰
൪ (22) 

 

࢛ ൌ ቎
െ
1
2
݉ଶ݈ଶcosߠߠሶ ଶ

െ݉ଶ݈ଶ cos ሶߠߠ ሶ݀
቏ (23) 

 

࢝ ൌ ቎
ሺ݉ଵ ൅ ݉ଶሻ݃ ൅ ܨ

െ
1
2
݉ଶ݈ଶ݃ߠ݊݅ݏ ൅ ߬

቏ (24) 

 
ࢌ ൌ ሾࢻ െ  ௡ (25)ܨሿࢼߪߤ

 

ࢻ ൌ ቂ
ଵߙ
ଶߙ
ቃ ൌ ൤

െ1
݈ଶߠ݊݅ݏ

൨ (26) 

 

ࢼ ൌ ൤
ଵߚ
ଶߚ
൨ ൌ ൤

0
݈ଶܿߠݏ݋

൨ (27) 

 
Substituting (22), (26), (27) in (15), B can be written as: 

 

ܤ ൌ
ߠଶ݊݅ݏ6 െ 4 ൅ ߠ݊݅ݏሺߠ݊݅ݏ6 െ ሻߠݏ݋ܿߪߤ

3݉ଶ݊݅ݏଶߠ െ 4݉ଶ െ 4݉ଵ

൅
ߠ݊݅ݏሺߠ݊݅ݏ12 െ ሻߠݏ݋ܿߪߤ

݉ଶሺ3݉ଶ݊݅ݏଶߠ െ 4݉ଶ െ 4݉ଵሻ
 

(28) 

 
Due to the unilateral constraint, the following relation is 

applicable: 
 

ܪ ൌ ݀ ൅ ݈ଶ cos  (29) ߠ
 
where, 

0 ൏ ܪ ൏ ሺ݈ଵ ൅ ݈ଶሻ 
 
Substituting (29) in (28), another relation for B can be 
obtained as: 
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ܤ

ൌ

4݈ଶଶ െ 12݈ଶଶඨ1 െ
ሺܪ െ ݀ሻଶ

݈ଶ
ଶ ඨ

െܪଶ ൅ ݀ܪ2 െ ݀ଶ ൅ ݈ଶ
ଶ

݈ଶ
ଶ

3݉ଶܪଶ െ ଶ݀݉ܪ6 ൅ 3݉ଶ݀ଶ ൅ 4݉ଵ݈ଶ
ଶ ൅ ݉ଶ݈ଶ

ଶ

൅

ܪଶሺ݈ߪߤ6 െ ݀ሻඨ
െܪଶ ൅ ݀ܪ2 െ ݀ଶ ൅ ݈ଶ

ଶ

݈ଶ
ଶ

3݉ଶܪଶ െ ଶ݀݉ܪ6 ൅ 3݉ଶ݀ଶ ൅ 4݉ଵ݈ଶ
ଶ ൅ ݉ଶ݈ଶ

ଶ

൅

ሺ݈ଶඨ1 െ
ሺܪ െ ݀ሻଶ

݈ଶ
ଶ െ ܪሺߪߤ െ ݀ሻሻሺ12݈ଶሺ݉ଵ ൅݉ଶሻඨ1 െ

ሺܪ െ ݀ሻଶ

݈ଶ
ଶ ሻ

݉ଶሺ3݉ଶܪଶ െ ଶ݀݉ܪ6 ൅ 3݉ଶ݀ଶ ൅ 4݉ଵ݈ଶ
ଶ ൅ ݉ଶ݈ଶ

ଶሻ
 

(30)

  
Putting B = 0 in (28) leads to B(θ1) = B(θ2) = 0 which 

determine the paradox zone boundaries. ∀ߠ ∈ ሺߠଵ,  ଶሻ leads toߠ
B(θ) < 0 which means that the motion is in the Painlevé 
paradox zone. If θf is defined as the maximum possible value 
for θ to keep the touching between the robot end and the rough 
surface, then ∀	ߠ ∈ ሾ0, 1ሻߠ ∪ ሺ2ߠ	,  fሿ leads to B(θ) > 0 and theߠ
motion is out from the Painlevé paradox zone, i.e. the solution 
is consistent and determined and the regular equations of 
motion (9) can be applied. It has to be noticed that Painlevé 
paradox occurs only when the center of mass trails the contact 
point [1], so in this research the motion of the robot was 
studied during one quadrant of its trajectory. In this quadrant σ 
=1 and the center of mass trails the contact point, so, d is 
downwards and θ is counter-clockwise as shown in Fig. 1.  

V. SIMULATION AND PARAMETRIC STUDY 

To investigate the effect of link-length ratio, link-mass 
ratio, total height ratio and friction on the dynamical behavior 
of the system, a numerical analysis was conducted. The values 
of constants in all cases were: m1 = 0.12 kg and l1 = 0.21m. In 
Figs. 2-8, each curve represents the motion of the robot 
starting from θ = 0 (or the corresponding value of d calculated 
from (29)) and ending at θf (or the corresponding value of d). 
The starting and ending positions of the paradox range, θ1 and 
θ2 (or d1 and d2), are specified by the intersection of each 
curve with the horizontal straight line B = 0.  

A. The Effect of Link-Length Ratio (γ) 

Let m1 =m2 = 0.12 kg, H = 0.3775 m, μ = 1 and the of link-
length ratio 0.9 ≤ γ ≤ 1.7, where γ = l2 / l1. The relation 
between θ and B is shown in Fig. 2. In this case, almost θ1 = 
17o and θ2 = 39o. According to (28) the effect of γ on B cannot 
be seen in this figure since this effect is inherited in θ itself. 
One should consult (29) and subsequently (30) to grip the 
relation between γ and B. Consequently in Fig. 3, which shows 
the relation between d and B for a range of link-length ratios γ, 
it can be noticed that increasing the link-length ratio results in 
increasing the paradox region in terms of d and entering the 
paradox region at lower values of d.  

B. The Effect of Link-Mass Ratio (δ)  

Let l2 = l1 = 0.21, H = 0.3775 m, μ = 1, and the link-mass 

ratio 0.5 ≤ δ ≤ 1.8, where, ߜ ൌ ௠ଶ

௠ଵ
	. Fig. 4 shows the variation 

of B with respect to θ at different link-mass ratios. It is clear 
that increasing the link-mass ratio δ decreases the paradox 
zone range and delays its occurrence. For higher δ, the robot 

can escape the paradox zone totally. A similar phenomenon 
can be seen in Fig. 5, which represents the variation of B with 
respect to d at different link-mass ratios. The two figures 
illustrate that there is a specific value δ* (depends upon the 
configuration parameters of the robotic system) for δ > δ* the 
paradox zone will totally disappear. 

 

 

Fig. 2 Angular displacement (θ) vs. B for a range of γ = l2 / l1 (m1= 
m2 = 0.12kg, µ = 1) 

 

 
Fig. 3 Linear displacement (d) vs. B for a range of γ = l2 / l1 (m1 = m2 

= 0.12kg, H = 0.3775, µ = 1) 
 

 

Fig. 4 Angular displacement (θ) vs. B for a range of δ = m2 /m1 (µ = 
1) 

C. The Effect of Total Height (H/l) 

Assume that l2 = l1 = l = 0.21, m1 =m2 =0.12 kg, μ = 1 and 
the total height 1.05 ≤ H/l ≤ 1.85. According to (28) the 
relation between θ and B for the specified range of the total 
height is shown in Fig. 2 also. One should refer to (29), (30) to 
grasp the relation between H/l and B as can be seen in Fig. 6. 
For illustration, when H/l = 1.05 the robot enters the paradox 
region at d = 0.02 m, but when H/l = 1.25 the robot enters the 
region at d = 0.06 m, however for these two values of H/l the 
robot remains in the paradox region for approximately ∆d = 
0.04 m. Therefore, the arrival of the robot to the paradox zone 
varies according to the value of H/l but the range of the 
paradox zone in terms of d is unchanging.  
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Fig. 5 Linear displacement (d) vs. B for a range of δ = m2 /m1 (l1 = l2 
= 0.21m, H = 0.3775, µ = 1) 

 

 

Fig. 6 Linear displacement (d) vs. B for a range of H/l (m1 = m2 = 
0.12kg, l1 = l2 = 0.21m, µ = 1) 

 

 

Fig. 7 Angular displacement (θ) vs. B for a range of µ (m1 = m2 = 
0.12 kg) 

 

 

Fig. 8 Linear displacement (d) vs. B for a range of µ (m1 = m2 = 
0.12kg, l1 = l2 = 0.21m, H = 0.3775m)  

 

D. The Effect of Coefficient of Friction (μ) 

Let l2 = l1 = 0.21, m1 =m2 =0.12 kg, H = 0.3775 and the 
range for the coefficient of friction 0.7≤ μ≤ 1.5. The 
coefficient of friction μ deeply affects the paradox region and 
the behavior of the robotic system. Higher μ leads to larger 
paradox zone, also, the robot enters the paradox zone at lower 
values for both θ and d, as shown in Figs. 7 and 8. The figures 
show that there is a critical value μ*, which depends on the 
robot's mass and dimension parameters, if μ < μ* there will be 
no paradox zone. For the considered robot μ* is slightly less 
than 0.9 which also represents the minimum value required for 
the coefficient of friction for the occurrence of Painlevé 
paradox. The paradox in the typical Painlevé model may 
appear at a quite larger value of the coefficient of friction, 
typically more than 4/3. From the practical point of view, the 
occurrence of Painlevé phenomenon becomes quite 
conceivable in practical robotic systems. 

VI. CONCLUSION 

In this research work, a dynamical model of a planar robotic 
system has been introduced. The equations of motion, of a 
two-link (P-R) robot, have been obtained using Euler-
Lagrange method and the condition leading to Painlevé 
paradox, in the form of a paradox index, has been determined. 
Numerical parametric studies were conducted to investigate 
the effect of link-length ratio, link-mass ratio, total height and 
friction on the dynamical behavior of the system. The size of 
the paradox zone expands and it occurs at lower value for the 
linear motion displacement with the increase of the link-length 
ratio. Oppositely, the size of the paradox zone decreases and it 
occurs at higher value for motion parameters with increasing 
link-mass ratio. Increasing the total height does not affect the 
size of the paradox zone though the robot enters the zone at 
higher value for the linear motion displacement. The size of 
the paradox zone expands and it occurs at lower value for the 
motion parameters with the increase of the coefficient of 
friction. Generally, critical values to escape the paradox zone 
can be specified to link-mass ratio and friction coefficient. 
This research work illustrates that for this robotic system the 
Painlevé paradox could occur at practical values of the 
coefficient of friction. Through a parametric study, we 
indicate how to control the size of the paradox zone and even 
how to escape it.   
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