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Abstract—Carefully scheduling the operations of pumps can be 

resulted to significant energy savings. Schedules can be defined 
either implicit, in terms of other elements of the network such as tank 
levels, or explicit by specifying the time during which each pump is 
on/off. In this study, two new explicit representations based on time-
controlled triggers were analyzed, where the maximum number of 
pump switches was established beforehand, and the schedule may 
contain fewer switches than the maximum. The optimal operation of 
pumping stations was determined using a Jumping Particle Swarm 
Optimization (JPSO) algorithm to achieve the minimum energy cost. 
The model integrates JPSO optimizer and EPANET hydraulic 
network solver. The optimal pump operation schedule of VanZyl 
water distribution system was determined using the proposed model 
and compared with those from Genetic and Ant Colony algorithms. 
The results indicate that the proposed model utilizing the JPSO 
algorithm is a versatile management model for the operation of real-
world water distribution system. 
 

Keywords—JPSO, operation, optimization, water distribution 
system. 

I. INTRODUCTION 

NERGY plays a crucial role in new modern world. With 
the increasing growth of population and a severe shortage 

in the energy sources, use of these sources has gained much 
significance. Pumping energy costs form a large part of the 
operational cost of water distribution systems worldwide. 
Even a small overall increase in operational efficiency would 
result in significant cost savings to the industry. Other benefits 
of operational optimization include improved water 
preservation and quality, ensuring compliance with water 
industry regulations, improved system management and 
benefits for future expansion such as automation. 

Operation costs for a pumping station include energy and 
maintenance costs. The maintenance cost, related to the wear 
of the rotating equipment, is difficult to be quantified. 
However, it is true that the maintenance cost increases when 
the number of pump switches increases. This point must be 
considered that the maintenance cost is proportional to the 
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number of pump switches. A pump switch refers to ‘‘turning 
on a pump that was not operating in the previous period’’ [1].  

 Mathematically, the optimal design and operation of 
pumping stations is a large-scale nonlinear programming 
problem because of the size of the problem in terms of the 
number of the decision variables and nonlinearity of the 
constraints. The objective in a design and operating of 
irrigation pumping system problem is to minimize the annual 
depreciation cost of construction and operations while 
satisfying system constraints to account for the hydraulics 
behavior, bounding constraints on decision variables, and 
other constraints that may reflect the operator preferences or 
system limitations. 

Many researchers have developed optimal control 
formulations to minimize the operating costs associated with 
water distribution pumping systems. Various optimization 
techniques have been applied to the operational optimization 
problem, including linear programming [2], [3], nonlinear 
programming [4], [5], dynamic programming [6], fuzzy logic 
[7], nonlinear heuristic optimization [8], [9], genetic 
algorithms [1], [10]-[12], particle swarm optimization [13], 
Ant colony optimization [14]. 

Finding optimal schedules for pumps in a water distribution 
network (WDN) is a difficult task for researchers and 
managers. A careful scheduling of pump operations may shift 
workload to cheaper electrical tariff periods and reducing the 
cost of energy consumed by pumps. Furthermore, energy 
savings can be accomplished by pumping water when tank 
levels are lower and combining the operations of several 
pumps efficiently. On the other hand, (future) pump 
maintenance costs caused by pump operations cannot be easily 
quantified, so surrogate measures are used to estimate it. The 
most common of such measures is the total number of pump 
switches: frequent switching (on/off) causes wear and tear of 
pumps and pressure surges throughout the network, and, 
hence, increases future maintenance costs. These maintenance 
costs can be considered in the optimization problem by 
limiting the number of pump switches [15]. In this paper, the 
optimal operation of pumping stations was determined using a 
Jumping Particle Swarm Optimization (JPSO) algorithm so 
that the minimum energy cost. The schedule for the operation 
of the water pump system can be a significant savings in the 
cost of energy to be achieved. Determine the optimum pump 
operation schedule an optimization model - simulation-based 
JPSO algorithm was developed. The model integrates JPSO 
optimizer and EPANET hydraulic network solver in 
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MATLAB. The proposed model is applied to find the optimal 
pump operation schedule of VanZyl water distribution 
network. The optimization model is developed and 
subsequently solved with the JPSO on method. Their 
efficiency and effectiveness was compared with GA and ACO 
algorithm.  

II. DISCRETE PARTICLE SWARM OPTIMIZATION 

The standard PSO considers a swarm S containing s 
particles (S = 1, 2… s) in a d-dimensional continuous solution 
space [16]. Each ith particle of the swarm has a position 
Xi=(xi1,xi2,…,xid ) and a velocity Vi=(vi1,vi2,…,vid). The 
position Xi represents a solution to the problem, while the 
velocity Vi gives the rate of change for the position of particle 
i at the next iteration. The position of particle i in each 
iteration is adjusted according to:  

 
X X V                                      (1) 

 
Each particle i of the swarm communicates with a social 

environment or neighborhood, N i ⊆ S, representing the group 
of particles with which it communicates, and which could 
change dynamically. In nature, a bird adjusts its position in 
order to find a better position, according to its own experience 
and the experience of its companions. In the same manner, in 
each iteration, each particle “I” updates its velocity reflecting 
the attractiveness of its best position so far 
B b , b , … , b  and the best position G∗ g , g , … , g  of 
its social neighborhood N(i), according to (2): 

 
V ωV c rand 	 B X c rand 	 G∗ X    (2) 

 
The parameters	ω, c 	and c  are positive constant weights 

representing the degrees of confidence of particle i in the 
different positions that influence its dynamics, while rand 	  
refers to a random number with uniform distribution [0, 1] that 
is independently generated at each iteration. 

The original PSO algorithm can only optimize problems in 
which the elements of the solution are continuous real 
numbers. Therefore several Discrete Particle Swarm 
Optimization (DPSO) methods have been proposed. In the 
DPSO proposed by [16] for problems with binary variables, 
the position of each particle is a vector X x , x ,… , x  of 
the d-dimensional binary solution space, X ∈ 0,1 , but the 
velocity is still a vector ,V  of the d-dimensional continuous 
space, V ∈ . A different way to update the velocity was 
considered on [17]. 

A DPSO whose particles at iteration are affected 
alternatively by its best position and the best position among 
its neighbors was proposed in [18]. The multi-valued PSO 
(MVPSO) proposed in [19] deals with variables with multiple 
discrete values. The position of each particle is a mono 
dimensional array in the case of a continuous PSO, a 2 
dimensional array in the case of a DPSO, and a 3-dimensional 
array for a MVPSO. Indeed, the position of particle i in the 
MVPSO is expressed by the term x, representing the 
probability that the ijk ith particle, in the jth iteration, takes the 

kth value. 
A new DPSO proposed in [20] does not consider any 

velocity, from the lack of continuity of the movement in a 
discrete space, the notion of velocity loses sense; however 
they kept the attraction of the best positions. They interpret the 
weights of the updating equation as probabilities that, at each 
iteration, each particle has a random behavior or acts in away 
guided by the effect of an attraction. The moves in a discrete 
or combinatorial space are jumps from one solution to another. 
The attraction causes the given particle to move towards this 
attractor if it results in an improved solution. An inspiration 
from the nature for this process is found in frogs, which jump 
from a lily pad to a pad in a pool. Thus, this new discrete PSO 
is called Jumping Particle Swarm Optimization (JPSO). 
Reference [21] tested capabilities of JPSO by solving 
minimum labeling Steiner tree problem, an NP-hard graph 
problem. Based on their computational analysis, JPSO clearly 
outperformed all the other procedures, obtaining high-quality 
solutions in short computational running times. This confirms 
the ability of JPSO method to deal with NP-hard 
combinatorial problems.  

III. PUMP SCHEDULING PROBLEM 

Given a water distribution network where demand patterns, 
initial tank levels, and electricity tariffs are specified, the goal 
is to find the best pump schedule over a typical operating 
cycle such that the total operational costs are minimized while 
guaranteeing a competent network service. Pump operational 
costs include cost of energy consumed by pumps and pump 
maintenance costs derived from the workload imposed on 
pumps. System constraints ensure feasibility of pump 
schedules, including that demands are supplied at adequate 
pressures and water supplied from tanks is recovered by the 
end of the scheduling period [22]. 

Pump energy costs depend on the energy price as well as on 
the amount of energy consumed. The price per unit of energy 
is given by electricity tariffs, which may vary during a 
scheduling period. In general, it is divided into an expensive 
peak and cheaper off-peak electricity tariffs. The actual 
amount of energy consumed by a pump depends on several 
parameters, including flow through the pump, head supplied 
by the pump, and wire-to water efficiency. These parameters 
can be calculated using a hydraulic simulator for a known 
pump schedule. Formally, operation of Np pumps in a WDN 
is scheduled over a scheduling period T. This scheduling 
period is divided into a number of time intervals NT. Given a 
particular schedule S, which represents pumps operating 
during each time interval, the total cost of energy is calculated 
as: 
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where Np: number of pumps; NT: number of time intervals; 
S(n,i) : duration for which pump n is operating during interval 
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i(h); Re(i) : energy tariff during interval i ($/kWh); Ec(n,i): 
energy consumption rate of pump n during interval i (kWh/h) 
[22]. 

The energy consumption rate of a pump depends on flow 
through the pump, head supplied by the pump, and efficiency 
at which it operates: 

 

),(

),().,(.01019.0
),(

ine

inhinQ
inEc                 (4) 

 
where Q(n,i) flow rate through pump n during interval i (L/s); 
h(n,i): total dynamic head (TDH) supplied by pump n during 
interval i (m); and e(n,i): overall (wire-to-water) efficiency of 
pump n during interval i [22]. 

In this model, the energy cost is calculated by the Epanet 
model directly. The penalties include: 

Penalty1: It is penalty to leave the choice of minimum and 
maximum allowable level in the reservoir is considered. The 
amount of the penalty is calculated from (5). 

      

Penalty	1 α

∑ ∑
,

1

∑ ∑
,

1
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H H ,

H H ,

	                      (5) 

 

where k: number of reservoirs; Nt: size of reservoirs;	H : 
water level for which reservoir k is operating during interval 
t(h); H , and H , : minimum and maximum level of 
reservoir k. 

To achieve a balance between water supplied and consumed 
from tanks, a viable schedule must ensure that tanks recover 
their levels by the end of scheduling period. That is, tank 
levels at the end of the scheduling period are not lower than 
those at the start. The lack of depth in the reservoir at the end 
than at the beginning of its depth can be controlled with a 
penalty 2. The amount of the penalty is calculated from (6): 

 

Penalty	2 β ∑
,

1                   (6)  

 
where H : tank level at the end of the scheduling period; 
H , : initial tank level and α and β are penalty coefficients. 

On the other hand, maintenance costs are difficult to 
quantify and are usually measured using a surrogate objective, 
such as the number of pump switches. A pump switch is 
defined as turning a pump on that was off during the preceding 
time interval. Frequent switching of pumps causes wear and 
tear of pumps which, in turn, increases maintenance costs. 
Thus, it is assumed that minimization of the number of pump 
switches reduces maintenance costs [6]. Frequent switching 
causes wear and tear of pumps, which, in turn, increases 
maintenance costs. Moreover, pump switches generate 
pressure surges that cause an unspecified damage to network 
components, such as pipes and valves. Thus, the general 
practice is to minimize the number of pump switches in order 
to reduce both the wear of the pumps and the damage to pipes 
and valves, hence, minimizing future maintenance costs. Most 
works consider energy cost as the most important objective, 

and add the number of pump switches as a constraint to the 
problem [6], [10], [22], [23]. Such constraint in the number of 
pump switches is implicitly enforced by the representation of 
schedules presented in this paper. 

IV. CONSTRAINTS 

In order to optimize, the model must satisfy system 
constraints that represent its performance criteria. These 
include hydraulic constraints representing conservation of 
mass and energy, minimum and maximum limits on tank 
storage levels, minimum pressures requirements at demand 
nodes and a balance between supply and demand from tanks. 
The hydraulic simulator implicitly handles some of these 
constraints, including hydraulic constraints and constraints on 
maximum and minimum tank levels [22]. 

To achieve a balance between water supplied and consumed 
from tanks, a viable schedule must ensure that tanks recover 
their levels by the end of scheduling period. That is, tank 
levels at the end of the scheduling period are not lower than 
those at the start [22]. 

Therefore, the optimization model must satisfy minimum 
pressure constraints at demand nodes: 

 
H , H 					j 1,… , N                         (7) 

 
where H , :	head supplied at demand node j during time period 

i; H :	minimum head required at demand node j; and 

N :	number of demand nodes [22]. 
In order to reduce maintenance costs, an additional 

constraint on the number of pump switches is used. Thus, the 
number of pump switches is limited to a specified value: 

 
N N SW                                 (8) 

 
where SW: constant to be specified and it is the maximum 
number of switches allowed per pump during a scheduling 
period. Schedules with a lower number of pump switches are 
also acceptable, and thus, constraint (7) may be relaxed as 
[22]: 
 

N N SW                               (9) 

V. VANZYL TEST NETWORK 

Initially the test network, published in [23], was solved 
using the proposed model. It contains three pumps and two 
tanks. The layout of the network is shown in Fig. 1. Pumps 1A 
and 2B are identical pumps connected in parallel. When 
neither of these pumps is active, a booster pump 3B transfers 
water from Tank A to Tank B. In case one or both the pumps 
(1A and 2B) are active, Pump 3B boosts the flow to Tank B. 
Tank B has a higher elevation than Tank A, and thus water 
may flow by gravity from Tank B to Tank A through the pipes 
connected to the demand node. The pump scheduling period T 
(24 h) is divided into 24 1-hr intervals. All tanks in the 
network must be 95% full at the start of the peak electricity 
period (7:00 a.m.). 
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In this instance the demand charge is taken to be zero and 
the water available at the reservoir is assumed to be infinite. 

The electricity cost is divided into two periods with a peak 
electricity tariff period from 7:00 to 24:00 and an off-peak 
tariff from 0:00 to 7:00. The demand pattern contains two 
peaks at 7:00 and 18:00. More details about the test instance 
are provided by [24].  
 

 
Fig. 1 VanZyl test network 

 
For this example, 25 runs were conducted using different 

random seeds to assess the JPSO model’s average 
performance. In order to enable a fair comparison with the 
results provided by [23], each run was continued until the 
same number of function evaluations, i.e., 6,000 function 
evaluations for the VanZyl instance. Results obtained are 
compared with those obtained using a simple genetic 
algorithm (SGA) with binary representation and Hybrid GA 
with level controlled trigger representation. 

We propose an explicit representation based on the concept 
of time-controlled triggers. This representation has the 
advantage of satisfying the constraint on the number of pump 
switches implicitly. In contrast to the binary representation, 
which encodes the status of a pump during each time interval, 
the time-controlled triggers representation encodes the time 
when a pump changes its status. The concept of encoding time 
has already been proposed in the literature. We can thus limit 
the maximum number of switches per pump simply by 
limiting the number of decision variables of each solution.  

The median, best and worst values were obtained from the 
results of 25 runs and presented in Table I. CE and NS 
correspond, respectively, to the daily electrical cost and total 
number of pump switches. Results under ACOa were obtained 
taking into account constraint NS≤9, while results under ACOb 
were obtained considering constraint NS=9. In Table II, results 
obtained using Hybrid GA [23] are also presented. The JPSO 
algorithm produced better results compared to a minimum cost 
solution and compared well with the median results obtained 
using Hybrid GA. The statistical parameters of Hybrid GA, 

presented in Table II, were calculated based on results from 
seven random runs. But results of ACO are much better than 
the others. 

 
TABLE I 

RESULTS OF TEST NETWORK (25 RUNS, 6000 EVALUATIONS, 9)  

ACOb  JPSO 
  

 C  N  C  

9 329.1 9 340.49 Best  

9 357.9 9 347.66 Median 

9 364.7 9 355.81 Worst 

b: VanZyl et al.[24] 
 

TABLE II  
 RESULTS OF TEST NETWORK (25 RUNS, 6000 EVALUATIONS, 9)  

Hybrid GAa ACOa  JPSO   
 C  N  C  N  C  

3 344.4 3 326.5  6 341.7 Best  

4 348.6 4 349.2 7 344.21 Median 

5 354.8 7 357.6 9 353.11 Worst 

a: van Zyl et al. [24] 
 

Finally, in order to illustrate the structure of schedules 
obtained, Figs. 2 and 3 show solutions obtained by the JPSO 
algorithm for the VanZyl network using constraint N 9 and 
N 9. In both cases, the best solutions take full advantage of 
the off-peak electricity tariff. 

 

 

Fig. 2 Pump schedules obtained by JPSO algorithm for the VanZyl 
network: best solution (N 9) 

 

 

Fig. 3 Pump schedules obtained by JPSO algorithm for the VanZyl 
network: best solution (N 9) 

VI. CONCLUSION 

The optimization of pump operations in water distribution 
networks is an important problem in practice since it may 
result in substantial energy and monetary savings. By means 
of complex hydraulic simulation models and automatic data 
collection, a very precise model of a water distribution system 
can be obtained. However, it is the task of an optimization 
algorithm to generate candidate pump schedules that minimize 
energy and maintenance costs while providing a reliable and 
satisfactory service to customers. In present paper, an 
evolutionary algorithm namely Jumping Particle Swarm 
Optimization is used to solve the problem of operation of 
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pump operations in water distribution networks. The decision 
variable in this problem is turn pumps on/off at certain 
moments of the scheduling period. Those optimized schedules 
will have a predefined maximum number of pump switches, 
thus limiting the wear and tear of the pumps, and limiting 
maintenance costs. As a consequence of this, the search space, 
that is, the number of potential solutions can be significantly 
reduced.  

The optimization algorithm, based on the JPSO, minimizes 
the electricity cost of pumps while satisfying constraints on 
minimum pressures and balance between supply and demand 
from tanks. Results of a VanZyl test network show that the 
performance of the proposed model with a JPSO algorithm is 
better than Hybrid GA but the ability of the ant colony 
algorithm to find the minimum solution than other two 
algorithms in both cases is higher. Overall, in both cases, a 
middle answer with the JPSO algorithm is better and the worst 
answer in the model is less compared to other algorithms. 
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