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Abstract—This study presents a hybrid metaheuristic algorithm 

to obtain optimum designs for steel space buildings. The optimum 
design problem of three-dimensional steel frames is mathematically 
formulated according to provisions of LRFD-AISC (Load and 
Resistance factor design of American Institute of Steel Construction). 
Design constraints such as the strength requirements of structural 
members, the displacement limitations, the inter-story drift and the 
other structural constraints are derived from LRFD-AISC 
specification. In this study, a hybrid algorithm by using teaching-
learning based optimization (TLBO) and harmony search (HS) 
algorithms is employed to solve the stated optimum design problem. 
These algorithms are two of the recent additions to metaheuristic 
techniques of numerical optimization and have been an efficient tool 
for solving discrete programming problems. Using these two 
algorithms in collaboration creates a more powerful tool and 
mitigates each other’s weaknesses. To demonstrate the powerful 
performance of presented hybrid algorithm, the optimum design of a 
large scale steel building is presented and the results are compared to 
the previously obtained results available in the literature. 

 
Keywords—Optimum structural design, hybrid techniques, 

teaching-learning based optimization, harmony search algorithm, 
minimum weight, steel space frame. 

I. INTRODUCTION 

TEEL buildings are one of the most common structural 
types as these structures have high strength and ductility as 

well as fast constructability. In practice, design engineers try 
to meet required criteria and structural performance, but recent 
economic conditions in the world push them to consider how 
to obtain more economical designs as well. However, 
obtaining optimum structural designs is not an easy mission 
for designers due to the complexity and nonlinearity in the 
analysis and the design of steel structures. Generally, that 
complexity includes selection of discrete design variables, 
complex design limitations on ultimate strength capacities of 
structural members, displacement constraints, and stability and 
geometric compatibilities. At this stage, metaheuristic 
techniques, important tools for optimum structural design 
problems, take care of this challenge.  

Metaheuristic techniques have become efficient tools for 
structural optimization problems since their emergence and in 
recent years large number of optimum design algorithms have 
been developed that are based on these techniques [1]-[9]. 
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In this study, a hybrid version of the teaching-learning based 
optimization (TLBO) and harmony search (HS) algorithms is 
developed and employed for the optimum design of steel 
space frames. The sequence numbers of the W steel section, 
listed in steel profile table, are treated as design variables. 
Design constraints are implemented from the specification of 
LRFD-AISC (Load and Resistance Factor Design [LRFD]) 
[10] which include the ultimate strength requirements, the 
displacement limitations, inter-story drift restrictions, and 
geometric constraints. The solution to the discrete design 
optimization problem is obtained by the proposed algorithm 
and the design example is presented to demonstrate the 
performance of the design optimization algorithm. 

II. PROPOSED HYBRID TLBO-HS ALGORITHM 

A. Teaching-learning Based Algorithm 

The TLBO algorithm, population-based global optimization 
method originally developed by [11]-[13], is inspired by the 
interaction and outcome of the teacher and learners and 
mimics the teaching–learning process by simulating the 
interactivity between the teacher and learners (students) in a 
class. This optimization algorithm requires only common 
controlling parameters like the population size and number of 
generations. In this simulation, the teacher, who is considered 
the most knowledgeable person in the class (population), 
desires to improve the average performance and information 
level on a specific subject of students in the class (individuals 
in a population). Since the teacher shares his or her knowledge 
and experience with the learners, the quality of the teacher 
affects the outcome of the learners. It is obvious that a more 
qualified teacher generates better student outcomes, in terms 
of their marks or grades, which are measured by a higher 
mean value (performance criterion).  

The analogy of teaching–learning process, which TLBO 
algorithm is based on, is summarized in [11]-[13]. Based on 
the teaching–learning process, the mathematical process of 
TLBO is divided into two phases. The first is the “teacher 
phase”, which means learning from the teacher; and the 
second is the “learner phase”, which means learning through 
the interactions between learners through efforts to share 
information while interacting with each other. The 
implementation of TLBO algorithm is explained with stepwise 
manner and briefly discussed below. The flowchart of the 
TLBO algorithm is presented in Fig. 1. 

The TLBO algorithm requires assigning the number of 
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students (population size) and stopping criteria (maximum 
number of generations). In this step, the class, which 
represents the population, is filled with randomly generated 
students (solutions) according to the population size (np) and 
number of design variables (ndv)  

  

Class

x1
1 x2

1 … xndv 1
1 xndv

1

x1
2 x2

2 … xndv 1
2 xndv

2

⋮ ⋮ … ⋮ ⋮
x1
np 1 x2

np 1 … xndv 1
np 1 xndv

np 1

x1
np x2

np … xndv 1
np xndv

np

→ f x1

→ f x2

⋮ ⋮
→ f xnp 1

→ f xnp

 

 
where, each row represents a student (solution) in the 
population (class) and f(x1, x2, …, np) represents the 
corresponding objective function value.  

During the teaching phase of the algorithm where learners 
learn from the teacher, the teacher’s objective is to improve 
their mean outputs (grades) [11]. The best solution which has 
the minimum objective function value in the population is 
found and it resembles the teacher. Since the teacher will 
make an effort to move the mean of the population (class) for 
the students towards the teacher, an update formula for the 
solution (student) is applied as; 

 
Difference	Mean r M TM  

 
where, Tf is the teaching factor that decides the value of mean 
to be changed, and ri is the random number in the range [0, 1]. 
The teaching factor may have a value between 1 and 2 and it is 
not utilized as an input to the algorithm, and its value is 
randomly assigned by using; 
 

T round 1 Random 0,1 2,1  
 
However, the algorithm performs much better if the value 

of Tf is either 1 or 2 and hence to simplify the algorithm, the 
teaching factor is suggested to take a value of either 1 or 2 
depending on the rounding up criteria. This difference 
modifies the existing solution according to; 

 
x , x , Difference	Mean 

 
In case the new solution has better output than the current 

solution, the new solution is replaced with the current solution. 
Otherwise, existing solution is preserved. In other words, if 
f(xnew,i) < f(xi) xi= xnew,i; if f(xnew,i) ≥ f(xi) xi= xi. 

In the learner phase of the algorithm, according to the 
teaching–learning process, learners can also increase their 
knowledge by means of interaction among themselves. So, a 
student interacts randomly with other students in the class to 
learn something new and to enhance his or her knowledge. 
Obviously, if the other students have more knowledge than 
him or her, a student can learn new things. At any iteration, 
sharing new information between the learner i and j in the 
class and learner modification can be expressed 
mathematically; 
For	i 1: P  

X 	and	randomly	selected	learnerX ,where	i j	 
 

X , X , r X X 		if			f X f X  
 

X , X , r X X 				if			f X f X  
 

End	For. 
Similar to the teaching process, if the new solution produces 

a better objective function value f(xnew,i) than the current 
solution f(xi) changes xi to xnew,i. Otherwise, it preserves the 
existing solution.  

At the end of the learning phase, a cycle (iteration) is 
completed for the TLBO and the steps in teaching and 
learning phase are continued until reaching a termination 
criterion. Generally, a termination criterion is a predetermined 
maximum generation cycle number.  

 

 

Fig. 1 Flow chart for Teaching-Learning Based Optimization (TLBO) 
algorithm 

B. Harmony Search Algorithm 

The HS algorithm, an emerging metaheuristic optimization 
algorithm, is inspired by the working principles of harmony 
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improvisation. Since the initial development of HS algorithm 
by [14], [15], it now has substantial literature. HS algorithms 
have been applied to a diverse range of structural engineering 
problems [6], [16]-[20]. As concluded in these studies, HS 
algorithm is an effective method to find the optimum solutions 
of such design problems. 

The musicians in an orchestra try various possible 
combinations of the music pitches stored in their memory, 
while they are improvising a harmony to find a fantastic 
harmony through musical improvisations. For engineering 
optimization processes, where the main objective is to find the 
global solution of a given objective function, this musical 
process can be imitated to find the global solution of a given 
objective function in engineering optimization process. In this 
imitation, decision variables in the optimization problem 
replace the musicians and the global or near-global solution is 
treated as the perfect harmony. The flowchart of the basic HS 
method is given in Fig. 2. HS algorithm can be summarized 
with following five principal steps. 

 

 

Fig. 2 Flow chart for harmony search (HS) algorithm 
 

Step1. The problem and algorithm parameters are initialized. 
A possible value range for each design variable of the 
optimum design problem is specified and a pool is 
constructed by collecting these values together from 
which the algorithm selects values for the design 
variables. Furthermore, HS algorithm parameters; 
HMS; the size of the harmony memory (HM) matrix 
(the number of solution vectors in harmony memory), 
HMCR; harmony memory considering rate, PAR; pitch 
adjusting rate and the maximum number of searches 

are also determined in this step. 
Step2. Initialization of the HM: HM matrix is initialized. In 

HM matrix, each row contains the values of design 
variables which are randomly selected feasible 
solutions from the design pool for that particular design 
variable. Hence, HM matrix has n columns where n 
describes the total number of design variables. The HM 
matrix, the number of rows which is selected in the first 
step, has the following form: 
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xi,j describes the value of the ith design variable in the jth 
randomly selected feasible solution. These candidate designs 
in HM matrix are sorted such that the objective function value 
corresponding to the first solution vector is the minimum. In 
other words, the feasible solutions in the HM matrix are sorted 
according to their objective function fitness.  
Step3. Improvisation of a new harmony: There are three rules 

to generate a new harmony vector and these are 
memory consideration, pitch adjustment, and random 
selection. 

The new value of the ith design variable in a new harmony 
can be chosen from any discrete value within the range of ith 
column of the harmony memory matrix with the probability of 
HMCR which varies between 0 and 1. In other words, one of 
the discrete values of the vector {xi,1, xi,2, xi,3,…., xi,HMS}

T can 
be assigned as the new value of xi with the probability of 
HMCR. All other design variables are treated the same way. In 
the random selection, the new value of the ith design variable 
can also be chosen randomly from the entire pool with the 
probability of 1-HMCR. That is; 

 

∈ , , , , …… , , , 	
∈ , , …… , ,w 	 1

 

 
where, ns is the total number of values for the design variables 
in the pool. When the new value of the design variable is 
selected among those of HM matrix, this should be checked 
whether pitch adjustment requires this new value or not. Pitch 
adjustment parameter PAR is used for that decision as follows: 

 
											 	

				 	 1  

 
If the value selected for xi

new from the harmony memory is 
the kth element in the general discrete set and the new pitch-
adjustment decision for xi

new came out to be yes from the test, 
then new xi

new takes the neighboring value k+1 or k-1. This 
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operation helps to improve the harmony memory for diversity, 
prevent stagnation and get a greater chance of reaching the 
global optimum. 
Step4. Update the HM: If the newly generated harmony vector 

gives a better objective function value than the worst 
harmony in HM matrix, the new harmony vector is 
included in the HM while the worst one is taken out 
and the harmony memory matrix is then sorted in 
descending order by the objective function value. 

Step5. Check the termination criterion: If the stopping 
criterion (i.e. maximum number of improvisations) is 
satisfied, computation is terminated. Otherwise, steps 3 
to 5 are repeated until the termination criterion which is 
the pre-selected maximum number of iterations is 
reached.  

C. Hybrid TLBO-HS 

Based on the mechanisms of the aforementioned TLBO and 
HS, these methods are combined together and the hybrid 
optimization algorithm, hTLBO-HS, is proposed to cope with 
complex optimization problems. In the TLBO algorithm, 
although the fitness of the students can be improved using 
effective and adequate search rules, achieving proper initial 
solutions and protecting diversity in the population to reach 
global optima are challenging tasks. The teacher attracting the 
considerable quantities of students may lead to over-similarity 
among the class (population). HS method is utilized and 
combined with TLBO in the new optimization algorithm to 
eliminate this drawback. That provides more efficient and 
comprehensive functionality by improvising new solutions 
(students) into population and by sorting the students 
according to their grade (fitness). Thus, being trapped into 
local minima and high similarity among the solution 
candidates can be avoided by the proposed hybrid 
optimization method.  

In addition to teaching and learning phases, HS plays the 
role of self-studying and researching by the students in TLBO.  

By random selection, memory consideration and pitch 
adjustment functionalities in improvising a new solution 
(student), the HS method helps the population (class) to 
improve the mean of the class, to prevent over-similarity and 
enhance the overall efficiency of the algorithm. HS is utilized 
as the third phase of the TLBO algorithm in addition to 
teaching and learning phases in each generation. In HS, 
population is sorted and taken as harmony memory 
(HMS=Class size) and teaching and learning phases use a new 
population in the following cycle. The flowchart of the 
hTLBO-HS algorithm is presented in Fig. 3. The computer 
software is developed to apply the explained steps and 
numerical examples are analyzed to test the effectiveness of 
the proposed method for optimum design of steel space frames 
in Section IV.  

III. MATHEMATICAL MODEL FOR DISCRETE OPTIMUM 

DESIGN OF SPACE STEEL FRAMES TO LRFD-AISC 

The design of space steel frames necessitates the selection 
of steel sections for its columns and beams from a standard 

steel section table. The obtained design must satisfy the 
serviceability and strength requirements specified by the 
design specifications. The design constraints are implemented 
from LRFD-AISC and the following discrete programming 
problem is obtained.  

 

 

Fig. 3 Flow chart for proposed hTLBO-HS algorithm 
 
The objective function is taken as the minimum weight of 

the frame to observe the overall economy or the material cost 
of the frame and it is expressed as; 

 

1 1

 (1)

 
where; W defines the weight of the frame, mr is the unit weight 
of the steel section selected from the standard steel sections 
table that is to be adopted for group r, tr is the total number of 
members in group r, ng is the total number of groups in the 
frame, and ls is the length of members which belongs to group 
r. 

The strength capacity of the frame members are required to 
satisfy the following inequalities specified in Chapter H of 
LRFD-AISC. These strength constraints for W-sections that 
are selected for beam-column members are given as; 
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where, Mnx is the nominal flexural strength at strong axis (x 
axis), Mny is the nominal flexural strength at weak axis (y 
axis), Mux is the required flexural strength at strong axis (x 
axis), Muy is the required flexural strength at weak axis (y 
axis), Pn is the nominal axial strength (Tension or 
compression) and Pu is the required axial strength (Tension or 
compression) for member i. The values of Mux and Muy are to 
be obtained by carrying out P- analysis of the steel frame. 
This is an iterative process which is quite time consuming. In 
Chapter C of LRFD-AISC an alternative way is suggested for 
the computations of Mux and Muy values where two first order 
elastic analyses are carried out. In the first analysis, the frame 
is analyzed under the gravity loads only where the sway of the 
frame is prevented from obtaining Mnt values. In the second 
analysis, the frame is analyzed only under the lateral loads to 
find Mlt values. These moment values are combined as; 
 

 (4)
 
where, B1 is the moment magnifier coefficient and B2 is the 
sway moment magnifier coefficient. The details of how these 
coefficients are calculated are stated in Chapter C of LRFD-
AISC [10]. 

Displacement constraints, the lateral displacements and 
deflection of beams in steel frames, are limited by the steel 
design codes due to serviceability requirements. According to 
the ASCE Ad Hoc Committee report, the accepted range of 
drift limits by first-order analysis is 1/750 to 1/250 times the 
building height, H, with a recommended value of H/400.The 
typical limits on the inter-story drift are 1/500 to 1/200 times 
the story height. Based on this report the deflection limits 
recommended are proposed in [9], [10] for general use which 
is repeated in Table I. 

 
TABLE I 

DISPLACEMENT LIMITATIONS FOR STEEL FRAMES 

 Item Deflection Limit 

1 Floor girder deflection for service live load L/360 

2 Roof girder deflection L/240 

3 Lateral drift for service wind load H/400 

4 Inter-story drift for service wind load H/300 

 
 It is necessary to limit the mid-span deflections of beams in 

a steel space frame in an effort to not cause cracks in brittle 
finishes that they may support due to excessive displacements. 
Deflection constraints are expressed by the following 
inequality;  

 

1 0 1, . . , 	,				 1, . . , (5)

 

where, jl is the maximum deflection of jth member under the 
lth load case, j

u is the upper bound on this deflection which is 
defined in the code as span/360 for beams carrying brittle 
finishers, nsm is the total number of members where deflection 
limitations are to be imposed, and nlc is the number of load 
cases. 

Drift constraints are of two types. One is the restriction 
applied to the top story sway and the other is the limitation 
applied on the inter-story drift. Top story drift limitation is 
expressed as in; 

 
∆

1	 0			 

 
1, . . , , 				 1, . . , 	

(6)

 
where, H is the height of the frame, njtop is the number of joints 
on the top story, nlc is the number of load cases, (top)jl is the 
top story drift of the jth joint under lth load case and ratio is the 
drift ratio given the ASCE Ad Hoc Committee report. 

In multi-story steel frames the relative lateral displacements 
(Inter-Story Drift) of each floor is required to be limited. This 
limit is defined as the maximum inter-story drift which is 
specified as hsx /Ratio where hsx is the story height and ratio is 
a constant value provided by the ASCE Ad Hoc Committee 
report;  

 
∆

1	 0		 

 
1, . . , , 		 1, . . , 	

(7)

 
where, nst is the number of story, nlc is the number of load 
cases and (oh)jl is the story drift of the jth story under lth load 
case. 

In steel frames, we also need the geometric constraints 
because it is not desired that the column section for upper 
floor has larger sections than the lower story column for 
practical reasons as having a larger section for the upper floor 
requires special joint arrangements which is neither preferred 
nor is economical. The same applies to the beam-to-column 
connections. The W-section selected for any beam should 
have a flange width smaller than or equal to the flange width 
of the W-section selected for the column to which the beam is 
to be connected. These are shown in Fig. 1 and named as 
geometric constraints. These limitations are included in the 
design optimization model to satisfy practical requirements. 
Two types of geometric constraints are considered in the 
mathematical model. These are column-to-column and beam-
to-column geometric constraints. 

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:9, No:7, 2015

1376

 

 

 
 

Fig. 4 Beam column geometric constraints 
 
For columns, the depth and the unit weight of W-sections 

selected for the columns of two consecutive stores should be 
either equal to each other or the one in the upper story should 
be smaller than the one in the lower story. These limitations 
are included in the design problem as;  

 

1	 0							 1, . . , 		 (8)

1	 0								 1, . . , 	 (9)

 
where; nccj is the number of column-to-column geometric 
constraints defined in the problem, ma

i is the unit weight of W-
section selected for above story, mb

i is the unit weight of W-
section selected for below story, Da

i is the depth of W-section 
selected for above story, and Db

i is the depth of W-section 
selected for below story. 

When a beam is connected to a flange of a column, the 
flange width of the beam should be less than or equal to the 
flange width of the column so that the connection can be made 
without difficulty. In order to achieve this, the flange width of 
the beam should be less than or equal to (D-2tb) of the column 
web dimensions in the connection where D and tb are the 
depth and the flange thickness of the W-section respectively as 
shown in Fig. 4; 

 

2
1	 0 			 1, . . , 	 

 
or 

(10)

1	 0						 1, . . , 	 (11)

 
where, nj1 is the number of joints where beams are connected 
to the web of a column, nj2 is the number of joints where 
beams connected to the flange of a column, Dci is the depth of 
W-section selected for the column at joint i, (tb)cj is the flange 
thickness of the W-section selected for the column at joint i, 
(Bf)ci is the flange width of the W-section selected for the 
column at joint i and is the (Bf)bi flange width of the W-section 
selected for the beam at joint i. 

The discrete optimum design problem of steel space frames 

necessities the selection of appropriate steel sections for the 
frame members from W-sections list such that the objective 
function described in (1) is the minimum while the design 
constraints given in inequalities from (2) to (11) are satisfied. 
This is a combinatorial optimization problem.  

IV. DESIGN EXAMPLES 

The plan and 3D views of the five-story, two-bay steel 
space frame shown in the Fig. 5 and 6 is designed using the 
hTLBO-HS algorithm and the optimum solutions obtained. 
The regular steel frame with 54 joints and 105 members are 
grouped into 11 independent design variables. Gravity loads as 
well as lateral loads, which the frame is subjected to, are 
computed per ASCE 7-05. The design dead and live loads are 
selected as 2.88kN/m2 and 2.39kN/m2 respectively, the 
ground snow load is considered to be 0.755kN/m2 and the 
basic wind speed is assumed to be 105mph (65 m/s). The 
following load combinations are considered in the design of 
the frame according to the code specification and these load 
combinations are 1.2D+1.6L+0.5S, 1.2D+0.5L+1.6S, 
1.2D+1.6W+0.5L +0.5S where D is the dead load, L is the live 
load, S is the snow load and W is the wind load. In this design 
example, the maximum deflection of beam members is 
restricted at 1.67 cm, the drift ratio limits for inter story drift 
and top story drift are taken as 1.33 cm and 6.67 cm, 
respectively. 

 

 

Fig. 5 Plan view of five-story, two bay steel frame 
 

Optimum design problem of the five-story, two-bay steel 
frame is solved by using proposed hTLBO-HS algorithm 
described. In these examples, following TLBO and HS 
parameters are used: teaching factor Tf =1.20, population and 
harmony memory size (HMS) = 70, pitch adjusting rate (PAR) 
= 0.3, harmony memory considering rate (HMCR) = 0.9, and 
maximum generation number = 200. The optimum designs 
obtained by hTLBO-HS are shown in Table II. It is clearly 
illustrated in the table that the lightest weight is obtained as 
269.184 kN by using hTLBO-HS algorithm The design 
histories of these algorithms for the best solutions are also 
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plotted in Fig. 7. It is apparent from the figure that the 
proposed algorithms show remarkable performance.  

 

 

Fig. 6 3D View of the 105-member steel frame 
 

 
TABLE II 

DESIGN RESULTS OF THE FIVE-STORY, TWO BAY STEEL FRAME 

Member 
group 

Type HS hTLBO-HS 

1 Beam W530X66 W460X52 

2 Beam W310X38.7 W200X35.9 

3 Column W200X35.9 W310X38.7 

4 Column W200X35.9 W200X46.1 

5 Column W360X44 W360X44 

6 Column W310X38.7 W310X74 

7 Column W360X72 W250X73 

8 Column W610X92 W610X101 

9 Column W410X53 W460X74 

10 Column W360X72 W250X73 

11 Column W760X147 W760X173 

Max. Strenght Ratio 0.979 0.921 

TopDrift (cm) 4.837 4.708 

Inter Storey Drift (cm) 1.333 1.325 

Maximum Iteration 50000 42000 

Weight (kN) 278.196 269.184 

 

 

Fig. 7 Design history for 1105-member steel frame 

V. CONCLUSION 

A hybrid discrete optimization (hTLBO-HS) algorithm is 
proposed and utilized to calculate a minimum weight for steel 
space frame structures, where the design constraints are 
implemented as stated in the LRFD-AISC provisions, by 
optimizing the beam and column sections. The recently 
developed hTLBO-HS heuristic algorithm is simple, 
mathematically less complex and consists of three phases; 
teaching and learning phases of TLBO and HS phase. In the 
design, the cross-sectional areas of W-section are considered 
as design variables. Design example given is performed to test 
the efficiency of the proposed optimization algorithm in this 
paper for complex grillage systems. 

The performance of the proposed hTLBO-HS clearly shows 
that the proposed hTLBO-HS algorithm has outperformed the 
HS algorithm in terms of better result. The results verify that 
the hTLBO-HS requires less iterations of structural analysis. 
However, it should be mentioned that its performance is 
dependent upon the initial values selected for the algorithm 
parameters (Population (number of students)(=HMS), Tf, 
HMCR, PAR), which are general characteristics of the 
stochastic optimization methods. 

Consequently, the obtained results by hTLBO-HS are 
powerful and efficient in finding the optimum solution for 
discrete structural optimization problems. It can be clearly 
stated that the proposed algorithm can be easily customized to 
suit the optimization of any system involving a large number 
of variables and objectives. 
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