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Abstract—In recent decades, probabilistic constrained optimal
control problems have attracted much attention in many research
fields. Although probabilistic constraints are generally intractable
in an optimization problem, several tractable methods haven been
proposed to handle probabilistic constraints. In most methods,
probabilistic constraints are reduced to deterministic constraints
that are tractable in an optimization problem. However, there is a
gap between the transformed deterministic constraints in case of
known and unknown probability distribution. This paper examines
the conservativeness of probabilistic constrained optimization method
for unknown probability distribution. The objective of this paper is
to provide a quantitative assessment of the conservatism for tractable
constraints in probabilistic constrained optimization with unknown
probability distribution.

Keywords—Optimal control, stochastic systems, discrete-time
systems, probabilistic constraints.

I. INTRODUCTION

SO far, optimal control methods subject to deterministic

constraints have been well developed with a wide range

of applications [1]–[14]. On the other hand, probabilistic

constrained optimal control problems have attracted much

attention in many research fields. Probabilistic constraints

are addressed by stochastic optimal control problems

where expected values of performance indices, probabilistic

constraints and convergence in probability are considered by

exploiting the statistical information on the system parameters

[15]–[27].

However, probabilistic constraints are generally intractable

in an optimization problem. In recent decades, considerable

attention has been paid to this difficulty related to the

stochastic optimal control problem. Thus, several tractable

methods haven been proposed to handle probabilistic

constraints.

In [15], [16], a second-order cone approximation method

was proposed based on results from robust optimization to

solve the stochastic linear-quadratic control problem. In [17],

a stochastic optimal control method was proposed while

considering the probabilistic polytopic sets instead of the

deterministic bounds of uncertain disturbances. Also, the

concept of probabilistic invariance was considered for the

case of multiplicative uncertainty [18] and the cases of both

additive and multiplicative uncertainty [19]. In addition, an
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alternate method for the convex approximation of probabilistic

constraints with polytopic constraint functions was proposed

in [20]. In [21], a decomposition method of probabilistic

constraints was proposed to obtain a lower bound to the

convex optimization problem. Although the aforementioned

papers [15]–[21] have achieved tremendous progress in dealing

with probabilistic constraints of the stochastic optimization

problems, there are several restrictions imposed on the

probability distributions of stochastic disturbances such as

the normal (Gaussian) distribution, known distribution, finite

support, and time invariance.

On the other hand, the method provided here enables

us to address unknown arbitrary probability distributions

including non-Gaussian, infinitely supported, and time-variant

distributions. The sampling methods using scenario

approximation [22], [23] and Bernstein approximation [24]

are alternative methods for dealing with arbitrary probability

distributions. However, the sampling methods usually require

heavy computational load. The objective in this study is to

provide a stochastic optimal control method for successfully

dealing with probabilistic constraints with less computational

load. In [25], an ellipsoid approximation method based

on Chebyshev’s inequality was proposed to handle soft

constraints. However, the calculation of the maximum volume

inscribed ellipsoid is also computationally demanding. In

[26]–[28], a direct component-wise comparison method using

the multi-dimensional Chebyshev’s inequality was proposed

to address probabilistic constraints without using ellipsoid

approximation. However, the tractable constraints in [26]–[28]

are restricted to the component-wise state constraints. That

means affine state constraints cannot be addressed by the

method in [26]–[28].

In [29], the Cantelli’s inequality, which is a similar

concentration inequality to the Chebyshev’s inequality, was

used to propose a solution method to the stochastic optimal

control problems. However, the control law in [29] is restricted

to linear state feedback and its feedback gain is computed by

solving a convex optimization problem. In contrast, we present

here another framework for solving the stochastic optimal

control problems in which the control variables are directly

optimized by solving a convex optimization problem.

In most methods, probabilistic constraints are reduced

to deterministic constraints that are tractable in an

optimization problem. However, there is a gap between

the transformed deterministic constraints in case of known

and unknown probability distribution. In this paper, we
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examine the conservativeness of probabilistic constrained

optimization method for unknown probability distribution.

The objective of this paper is to provide a quantitative

assessment of the conservatism for tractable constraints

in probabilistic constrained optimization with unknown

probability distribution.

II. NOTATION AND SYSTEM MODEL

Let R and N denote the sets of real and natural numbers,

respectively. Let R+ denote the set of non-negative real

numbers. For matrix A, the transpose and trace of A are

denoted by A′ and trA, respectively. Let diag.{· · · } denote
a diagonal block matrix. For matrices A = {ai,j} and

B = {bi,j}, let the inequalities between A and B, such as
A > B and A ≥ B, indicate that they are component-wise
satisfied, i.e., ai,j > bi,j and ai,j ≥ bi,j is true for all i and
j, respectively. Similarly, let each notation for absolute value
|A|, square root √A, and multiplication A⊗B indicate that it

is true component-wise, i.e., |A| = {|ai,j |},
√

A =
{√

ai,j

}
,

and A ⊗ B = {ai,j × bi,j} for all i and j.
Let the triple (Ω,F ,P) denote a probability space where

Ω ⊆ R is the sampling space, F is the σ-algebra, and P
is the probability measure [30]. Ω is non-empty and is not

necessarily finite. P(E) denotes the probability that event E
occurs. If P(E) = 1, E almost surely occurs. For random

variable z : Ω → R defined by (Ω,F ,P), let the expected
value and variance of z be denoted by E(z) and V(z),
respectively. For a random vector z = [z1, · · · , zn]′, where
each of its components is a random variable zi : Ω → R

(i = 1, · · · , n), which is defined on the same probability
space (Ω,F ,P), we also adopt the same notations E(z) and
V(z) to denote c(z) = [E(z1), · · · , E(zn)]′ and V(z) =
[V(z1), · · · ,V(zn)]′ for notational simplicity. Furthermore,
covariance matrix Cv(z) is defined by Cv(z) := E [{z −
E(z)}{z − E(z)}′].
Throughout this paper, we consider the following linear

discrete-time system with stochastic disturbances:

x(t + 1) = Ax(t) + Bu(t) + Cw(t), (1)

where t ∈ N is the time step, x(t) : N → R
n is the state,

u(t) : N → R
m is the control input, and w(t) : N → R

� is

the unknown stochastic disturbance. More precisely, for each

component wi : N × Ω → R of w, the random sequence

{wi(t) : t ∈ N} is a collection of random variables in the

same probability space (Ω,F ,P) equipped with a filtration
{Ft : t ∈ N} [30]. The system coefficients A ∈ R

n×n, B ∈
R

n×m, and C ∈ R
n×� are all known as constant matrices. The

pair (A,B) is assumed to be controllable. We also assume that
the initial state x(0) is given and that all components of state
x(t) are deterministically observable. Thus, we assume that
E(x(t)) = x(t) and V(x(t)) = 0 at present time t.
Next, we introduce some assumptions about the properties

of the stochastic disturbances.

Assumption 1: wi(t) and wj(t) are independent of each
other for all i �= j and t ∈ N. Also, wi(t) and wj(k) are
independent of each other for all t �= k and j ∈ {1, · · · , �}.
In fact, most previous studies typically assumed that random

variables are mutually independent as well as Assumption 1.

The case where random variables are mutually correlated

requires more complicated analysis than the one provided here

because Cv(w) cannot be neglected.
Assumption 2: E(w(t)) and V(w(t)) are assumed to be

known for each time t.
Note that the probability distributions of random variables

wi are not necessarily assumed to be known. However,

the probability distributions were assumed to be known in

previous studies [15]-[21] to transform the soft constraints into

hard constraints. In the present study, the assumption related to

known probability distributions is relaxed to include arbitrary

unknown probability distributions.

III. PRELIMINARIES

The inequality shown below is known as the Chebyshev’s

inequality.

Lemma 1 ([31]): For any random variable x and positive
constant κ ≥ 1, the following inequality holds:

P
(
|x − E(x)| ≥ κ

√
V(x)

)
≤ 1

κ2
. (2)

IV. PROBLEM STATEMENT

Hereafter, we formulate the stochastic optimal control

problem of a system (1). The control input at each time t
is determined to minimize the performance index given by

J := φ[x(t + N)] +
t+N−1∑

k=t

L[x(k), u(k)]. (3a)

Here, N ∈ N denotes the length of the prediction horizon. φ
and L are defined by

φ := E [x(t + N)′Px(t + N)], (3b)

L := E [x(k)′Qx(k)] + u(k)′Ru(k), (3c)

where P , Q, and R are positive definite constant matrices.

φ ∈ R+ is the terminal cost function, and L ∈ R+ is the stage

cost function over the prediction horizon.

Let p(t) = [p1(t), · · · , pn(t)]′: N → [0 1]n denote the

probability in vector form, which means that each component

pi(t) belongs to [0 1] for each time t.
For notational convenience, let X ∈ R

nN , U ∈ R
mN ,W ∈

R
�N , A ∈ R

nN×n, B ∈ R
nN×mN , C ∈ R

nN×�N , Q ∈
R

nN×nN , R ∈ R
mN×mN , and p ∈ R

nN , be defined by

X(t) :=

⎡
⎢⎣

x(t + 1)
...

x(t + N)

⎤
⎥⎦ , U(t) :=

⎡
⎢⎣

u(t)
...

u(t + N − 1)

⎤
⎥⎦ ,

W(t) :=

⎡
⎢⎣

w(t)
...

w(t + N − 1)

⎤
⎥⎦ , A :=

⎡
⎢⎢⎢⎣

A
A2

...

AN

⎤
⎥⎥⎥⎦ ,

B :=

⎡
⎢⎢⎢⎢⎣

B 0 · · · 0

AB B
. . .

...
...

. . .
. . . 0

AN−1B AN−2B · · · B

⎤
⎥⎥⎥⎥⎦ ,
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C :=

⎡
⎢⎢⎢⎢⎣

C 0 · · · 0

AC C
. . .

...
...

. . .
. . . 0

AN−1C AN−2C · · · C

⎤
⎥⎥⎥⎥⎦ ,

Q :=

⎡
⎢⎢⎢⎢⎣

Q 0 · · · 0

0
. . .

. . .
...

...
. . . Q 0

0 · · · 0 P

⎤
⎥⎥⎥⎥⎦ , R :=

⎡
⎢⎣

R 0 0

0
. . . 0

0 0 R

⎤
⎥⎦ ,

p(t) =

⎡
⎢⎣

p(t + 1)
...

p(t + N)

⎤
⎥⎦ .

Using the aforementioned notation, we rewrite the

performance index in (3) as follows:

J [x(t),X(t),U(t)] = E [x(t)′Qx(t)]
+ E [X(t)′QX(t)] + U(t)′RU(t), (4)

In addition, (1) over the prediction horizon can be rewritten

as

X(t) = Ax(t) + BU(t) + CW(t). (5)

We consider the probabilistic component-wise state

constraints and unbounded stochastic disturbances with

unknown probability distributions. Let x(t) and x(t) : N →
R

n denote the lower and upper bounds of x(t), respectively.
Here, we impose the following probabilistic constraint on

the optimization problem: for k = t + 1, · · · , t + N and

i = 1, · · · , n,

P (xi(k) < xi(k) < xi(k)) ≥ pi(k), (6)

where xi(k), xi(k) ∈ R, and pi(k) ∈ [0 1] for k = t +
1, · · · , t + N are given constant sequences and their subscript

indicates the ith element of the vector. Condition (6) indicates
that state xi over the prediction horizon must remain within

the bound [xi xi] at least with probability pi.

Let X ∈ R
nN and X ∈ R

nN be defined by

X(t) :=

⎡
⎢⎣

x(t + 1)
...

x(t + N)

⎤
⎥⎦ , X(t) :=

⎡
⎢⎣

x(t + 1)
...

x(t + N)

⎤
⎥⎦ .

Using the above notation, probabilistic constraint (6) is

rewritten in vector form as

P (
X(t) < X(t) < X(t)

) ≥ p(t). (7)

More precisely, by using the components Xi,Xi,Xi ∈ R, and

pi ∈ [0 1] of the vectors, condition (7) can be described as

nN∧
i=1

{P (
Xi(t) < Xi(t) < Xi(t)

) ≥ pi(t)
}

, (8)

where notation ∧ denotes the logical conjunction.

V. SOLUTION TO STOCHASTIC OPTIMAL CONTROL

PROBLEM

In this section, we provide the solution to stochastic optimal

control problem. First, we transform the minimization problem

of (3) subject to (1) into a quadratic programming problem

with respect to the sequence of control inputs over the

prediction horizon.

From (5), E(X(t)) and V(X(t)) are given by

E(X(t)) = Ax(t) + BU(t) + CE(W(t)), (9a)

V(X(t)) = C ⊗ CV(W(t)). (9b)

In (9a), we apply E(x(t)) = x(t) because the present state
x(t) is a deterministic vector. Moreover, (4) indicates that

J = x(t)′Qx(t) + U(t)′RU(t)
tr[QCv(X(t))] + E(X(t))′QE(X(t)). (10)

Note that covariance matrix Cv(X(t)) is independent of U(t):

Cv(X(t)) = E [{X(t) − E(X(t))}{X(t) − E(X(t))}′]
= E [{CW(t) − CE(W(t))}{CW(t) − CE(W(t))}′] .

Substituting (9a) into (10) and neglecting the terms that do

not contain U(t), we obtain

min
U(t)

J [x(t),X(t),U(t)] = (11)

min
U(t)

{
U′(t) (B′QB + R)U(t)

+2 (Ax(t) + CE(W(t)))′ QBU(t)

}
.

Note that the minimization problem of J in (3) subject to (1)
has been reduced to a quadratic programming problem with

respect to U.
In general, however, solving the quadratic programming

problem with probabilistic constraints is not straightforward.

Below, we provide the method for solving stochastic optimal

control problems. We can convert the probabilistic constraint

into deterministic constraint using the concentration inequality

in Lemma 1. The following theorem has been proven in [27].

Theorem 1: Suppose that the following condition holds:

Umin(t) ≤ BU(t) ≤ Umax(t), (12)

where Umin and Umax are defined by

Umin(t) := X(t) + κ(t) ⊗
√

C ⊗ CV(W(t)) (13a)

− Ax(t) − CE(W(t)),

Umax(t) := X(t) − κ(t) ⊗
√

C ⊗ CV(W(t)) (13b)

− Ax(t) − CE(W(t)).

κ(t) :=

[
1√

1 − p1(t)
, · · · ,

1√
1 − pnN (t)

]′
. (13c)

Then, the probabilistic condition (7) is fulfilled.

Remark 1: From Theorem 1, the minimization problem

of (11) with probabilistic constraint (7) is reduced to a

quadratic programming problem with deterministic constraint

(12), which can be solved using a conventional algorithm [32].

Remark 2: Suppose that we impose not only probabilistic
state constraint (7) but also control input constraint on the

optimization problem. Then, the optimization problem can be
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reduced to a quadratic programming problem (11) subject to

the following constraint:⎡
⎣ −B

B
F

⎤
⎦U(t) ≤

⎡
⎣ Umin

Umax

U

⎤
⎦ . (14)

Solving quadratic programming problem (11) subject to

constraint (14) is also straightforward using a conventional

algorithm [32].

Remark 3: Under the assumption of known probability
distribution, the probabilistic constraints can be equivalently

transformed into deterministic constraints without

conservativeness using a cumulative distribution function.

On one hand, the transformation from the probabilistic

constraints to the deterministic constraints proposed in this

paper yields a certain amount of conservativeness because

the Chebyshev’s inequality is given through evaluation of

loose bounds. Specifically, the proposed method suffers from

the disadvantage of conservativeness in transforming the

constraints but features the advantage of applicability to

arbitrary unknown probability distributions.

Remark 4: We provide a quantitative assessment of the
conservatism of inequality (12). Here, we suppose that w(t)
is given by the standard normal (Gaussian) distribution with

E(w(t)) and V(w(t)). Moreover, we consider the following
probabilistic constraint:

P (
Xi(t) < Xi(t)

) ≥ pi(t). (15)

From (15), we have the following:

P (
(CW)i < Xi − (Ax)i − (BU)i

) ≥ pi, (16)

where subscript i denotes the ith element of a vector. Let
Φ denote the cumulative distribution function of the standard

normal distribution defined by

Φ(α) :=
1
2

{
1 +

1√
π

∫ α

−α

e−t2dt

}
. (17)

Let μi and σi be defined by

μi := (CE(W))i , (18a)

σi := (C ⊗ CV(W))i . (18b)

Let Fi and Gi denote the cumulative distribution functions of

the standard normal distribution with mean μi and variance σi

and with zero mean and variance σi, respectively.

Fi(α) := Φ
(

α − μi

σi

)
, (19)

Gi(α) := Φ
(

α

σi

)
, (20)

By using Fi in (19), inequality (16) can be rewritten as

Fi

(
Xi − (Ax)i − (BU)i

) ≥ pi. (21)

Then, we have

(BU)i ≤ Xi − (Ax)i − F−1
i (pi). (22)

Subtracting (13b) from the right-hand side of (22) yields(
κ ⊗

√
C ⊗ CV(W)

)
i
+ (CE(W))i − F−1

i (pi). (23)

By using Gi in (20), (23) can be rewritten as(
κ ⊗

√
C ⊗ CV(W)

)
i
− G−1

i (pi). (24)

From (13c) and (18b), we can see that (24) can be rewritten

as
σi√

1 − pi
− G−1

i (pi) =: Hi(σi,pi). (25)

Let Hi(σi,pi) be defined as above. The plot of Hi(σi,pi)
is shown in Fig. 1. Note that probabilistic constraint

(15) is equivalent to deterministic constraint (22), and the

gap between (12) and (22) can be evaluated by (25).

Thus, Hi(σi,pi) indicates a quantitative assessment of the
conservatism of inequality (12).

Fig. 1. Plot of Hi(σi,pi).

VI. CONCLUSION

In this study, we have proposed an optimal control

design method for linear discrete-time systems with additive

stochastic disturbances under probabilistic constraints. The

advantage of the proposed method is its applicability to

stochastic disturbances with unknown probability distribution.

The Chebyshev’s inequality was applied to successfully handle

probabilistic constraints with a lower computational load.

Thus, the stochastic optimal control problem with probabilistic

constraints was reduced to a quadratic programming problem

with deterministic constraints, which can be solved using a

conventional algorithm. The feasibility and stability analyses

based on the proposed method are possible future research

areas.
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