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Effects of Viscous Dissipation and Concentration
Based Internal Heat Source on Convective

Instability in a Porous Medium with Throughflow
N. Deepika, P. A. L. Narayana

Abstract—Linear stability analysis of double diffusive convection
in a horizontal porous layer saturated with fluid is examined by
considering the effects of viscous dissipation, concentration based
internal heat source and vertical throughflow. The basic steady
state solution for Governing equations is derived. Linear stability
analysis has been implemented numerically by using shooting
and Runge-kutta methods. Critical thermal Rayleigh number Rac

is obtained for various values of solutal Rayleigh number Sa,
vertical Peclet number Pe, Gebhart number Ge, Lewis number
Le and measure of concentration based internal heat source
γ. It is observed that Ge has destabilizing effect for upward
throughflow and stabilizing effect for downward throughflow. And
γ has considerable destabilizing effect for upward throughflow and
insignificant destabilizing effect for downward throughflow.

Keywords—Porous medium, concentration based internal heat
source, vertical throughflow, viscous dissipation.

I. INTRODUCTION

DOUBLE diffusive convection in a fluid saturated porous
media is a subject extensively investigated over last

the few decades since it has many geophysical, engineering,
biological applications which includes energy storage and
recovery, nuclear waste disposal, insulation of buildings etc.

Study of viscous dissipation effect is noteworthy in natural
convection process in a variety of devices which are subject to
stronger gravitational field, high speed of rotation, high mass
flow rate or larger length scale problems. Effect of viscous
dissipation on convection was analysed in [1], [2] and [3].
Viscous dissipation effect on thermal convection in an inclined
porous layer is studied in [4]. Thermosolutal convection
with the inclusion of viscous heating contribution has been
examined in [5]. From the above works they have concluded
that instabilities caused by viscous dissipation might arise even
there is no temperature gradient in the vertical direction of the
porous layer. All the progresses in this area of research have
been included in the book [6].

The study of vertical throughflow is important since it alters
dimensionless temperature gradient across the porous layer.
By altering throughflow, there is a chance to regulate the
convective instability. In [7] throughflow effect on convection
in superposed fluid and porous layer is studied. Throughflow
effect on thermal convective instability has been investigated
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in [8], whereas this effect on double diffusive convection
is provided in [9]. Vertical throughflow effect on thermal
convection under the consideration of viscous dissipation is
analyzed in [10], where as this throughlow effect has been
studied in [11] with the assumption of a composite porous
medium containing two horizontal porous layers.

Convection with internal heat source is studied by several
researchers [12], [13]. This is similar to the model of earth’s
mantle which is heated internally by radioactive material.
This type of convection is little complicated because internal
heat being generated, strongly depends on the vertical motion.
Convective instability in a porous layer including internal heat
source with non uniform boundary conditions is discussed
in [14]. Thermosolutal convection with concentration based
internal heat source by using linear and nonlinear stability
theories have been analyzed in [15] and it extended to [16]
with the use of operative method to get sharp thresholds.

In the present article, double diffusive convection in a
homogeneous porous layer is examined by taking into account
of concentration based internal heat source, viscous heating
contribution and vertical throughflow.

II. MATHEMATICAL FORMULATION

The basic model consists of a fluid saturated homogeneous
porous layer with height H and extended up to infinity in
the horizontal directions. Ox∗y∗z∗ be the Cartesian frame of
reference such that y∗-axis to be in vertical direction. Porous
layer is supposed to be confined between two permeable
isothermal planes y∗ = 0 and y∗ = H . Temperature and
concentration at the lower plane be T0

∗, C0
∗ and at the

upper plane be T1
∗, C1

∗. Oberbeck-boussinesq approximation
and Darcy law are valid. Viscous heating contribution in the
energy balance is considered. The medium is heated due to
internal heat source which varies linearly with concentration.
The governing equations in dimensional form are

∇∗ · v∗ = 0, (1)
μ

K
v∗ = −∇∗P ∗ + ρf

∗g, (2)

σ
∂T ∗

∂t∗
+v∗·∇∗T ∗ = α∇∗2T ∗+

ν

Kc
v∗·v∗+β(C∗−C∗

0), (3)

φ
∂C∗

∂t∗
+ v∗ · ∇∗C∗ = D∇∗2C∗, (4)

where v∗ be the Darcy velocity, P ∗ be the pressure, ρf ∗ be
the fluid density. β is a proportionality constant of internal
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heat source. T ∗ and C∗ the temperature and concentration,
respectively. μ,K, φ, c, α, and D stands for viscosity,
permeability of the medium, porosity, specific heat, thermal
diffusivity and solutal diffusivity, respectively. Assuming
throughflow in the vertical direction, the boundary conditions
may be taken as

y∗ = 0 : v∗ = v0
∗, T ∗ = T1

∗, C∗ = C1
∗,

y∗ = H : v∗ = v0
∗, T ∗ = T0

∗, C∗ = C0
∗. (5)

Introducing dimensionless quantities

(x, y, z) =
1

H
(x∗, y∗, z∗), t =

α

σH2
t∗,

(u, v, w) = v =
H

α
v∗, P =

K(P ∗ + ρ0gy
∗)

μα
,

T =
T ∗ − T0

∗

T1
∗ − T0

∗ , C =
C∗ − C0

∗

C1
∗ − C0

∗ , σ =
(ρc)m
(ρcp)f

,

Equations (1)-(5) take the dimensionless form

∇ · v = 0, (6)

v = −∇P + [RaT +
1

Le
SaC ]̂j, (7)

∂T

∂t
+ v · ∇T = ∇2T +

Ge

Ra
v · v + γC, (8)

φ

σ

∂C

∂t
+ v · ∇C =

1

Le
∇2C, (9)

and boundary conditions

y = 0 : v = Pe, T = 1, C = 1,

y = 1 : v = Pe, T = 0, C = 0. (10)

where

Ra =
g0βTHK(T1

∗ − T0
∗)

να
, Sa =

g0βCHK(C1
∗ − C0

∗)
νD

,

Le =
α

D
, Pe =

v0
∗H
α

, Ge =
gβH

c
, γ =

βL2(C1
∗ − C0

∗)
α(T1

∗ − T0
∗)

.

Here γ, Ra, Sa, Pe, Le, and Ge are the dimensionless
coefficient of internal heat generation induced by radiation
absorbing concentrate, thermal Rayleigh number, solutal
Rayleigh number, vertical Peclet number, Lewis number, and
Gebhart number, respectively.

Basic steady state solution for (6)-(10) is given by

uB = 0, vB = Pe,wB = 0,

CB =
eLePe

(eLePe − 1)
− 1

(eLePe − 1)
eLePey,

TB = A2 +B2e
Pey

+

[
Ge

Ra
Pey +

γeLePe

Pe(eLePe − 1)
y − γeLePey

LePe2(eLePe − 1)

]

+

[
Ge

Ra
+

γeLePe

Pe2(eLePe − 1)
+

γeLePey

Pe2(Le− 1)(eLePe − 1)

]
,

(11)

where

A2 =
γeLePe

(ePe − 1)(eLePe − 1)Pe2

[
1 +

1

(Le− 1)
− 1

Le
+ Pe2

]

− γePe

(eLePe − 1)Pe2

[
eLePe +

1

(Le− 1)
− 1

Le

]

+
Ge(1 + Pe)

Ra(ePe − 1)
− ePe

(
Ge

Ra
− 1

)
.

B2 = − 1

(ePe − 1)

[
GePe

Ra
+ 1

]

− γ

(ePe − 1)Pe

[
1

(Le− 1)LePe
+

eLePe

(eLePe − 1)

]
,

dTB

dy
=

[
Ge

Ra
Pe+

γeLePe

Pe(eLePe − 1)
− γeLePey

Pe(eLePe − 1)

]

− ePeyPe

(ePe − 1)

[ −γ

(Le− 1)LePe2
+ 1 +

GePe

Ra

]

+
γ

(eLePe − 1)

[
−eLePeePey

(ePe − 1)
+

eLePeyLe

Pe(Le− 1)

]
.

dCB

dy
=

−LePe

(eLePe − 1)
eLePey. (12)

In (11)-(12), Pe = 0 is a singular point. The basic steady state
solution when Pe = 0 is

uB = 0, vB = 0, wB = 0, CB = 1− y,

TB = γ

[
y3

6
− y2

2

]
+

[γ
3
− 1

]
y + 1. (13)

III. LINEAR STABILITY ANALYSIS

To examine the stability of basic steady state solution, the
following perturbations are introduced.

u = uB + εU, v = vB + εV, w = wB + εW,

T = TB + εθ, C = CB + εΦ. (14)

Substituting (14) in (6)-(9), and neglecting the terms of order
ε2, we get

∂U

∂x
+

∂V

∂y
+

∂W

∂z
= 0, (15)

∂W

∂y
− ∂V

∂z
= −

[
Ra

∂θ

∂z
+

1

Le
Sa

∂Φ

∂z

]
, (16)

∂U

∂z
− ∂W

∂x
= 0, (17)

∂V

∂x
− ∂U

∂y
=

[
Ra

∂θ

∂x
+

1

Le
Sa

∂Φ

∂x

]
, (18)

∂θ

∂t
+ V

∂TB

∂y
+ Pe

∂θ

∂y
= ∇2θ + 2

Ge

Ra
PeV + γΦ, (19)

φ

σ

∂Φ

∂t
+ V

∂CB

∂y
+ Pe

∂Φ

∂y
=

1

Le
∇2Φ, (20)

y = 0 : V = 0, θ = 0, Φ = 0,

y = 1 : V = 0, θ = 0, Φ = 0. (21)
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Suppose the disturbances are transverse rolls i.e. z
independent. We look for solutions of (15)-(21) such that

U = U(x, y, t), V = V (x, y, t), W = 0,

θ = θ(x, y, t), Φ = Φ(x, y, t). (22)

Introducing stream function such that (15) satisfies

U =
∂Ψ

∂y
, V = −∂Ψ

∂x
, (23)

Substituting (23) in to (16)-(21), the following equations are
obtained.

∂2Ψ

∂x2
+

∂2Ψ

∂y2
= −

[
Ra

∂θ

∂x
+

1

Le
Sa

∂Φ

∂x

]
, (24)

∂θ

∂t
− ∂Ψ

∂x

∂TB

∂y
+ Pe

∂θ

∂y
= ∇2θ − 2

Ge

Ra
Pe

∂Ψ

∂x
+ γΦ, (25)

φ

σ

∂Φ

∂t
− ∂Ψ

∂x

∂CB

∂y
+ Pe

∂Φ

∂y
=

1

Le
∇2Φ, (26)

y = 0, 1 : Ψ = 0, θ = 0, Φ = 0. (27)

To obtain the solutions of (24)-(27), considering the following
plane waves

Ψ(x, y, t) = Ψ(y) exp(λt) cos(ax),

θ(x, y, t) = θ(y) exp(λt) sin(ax),

Φ(x, y, t) = Φ(y) exp(λt) sin(ax), (28)

where λ is exponential growth rate parameter and a is wave
number. To obtain the condition for neutral stability, we set
λ = 0. On substituting (28) in to (24)-(27), the following
eigenvalue problem is arrived.

(D2 − a2)Ψ + a

[
Raθ +

1

Le
SaΦ

]
, (29)

(D2−a2)θ−a
dTB

dy
Ψ+2a

Ge

Ra
PeΨ−PeDθ+γΦ = 0, (30)

(D2 − a2)Φ− aLe
dCB

dy
Ψ− LePeDΦ = 0, (31)

y = 0, 1 : Ψ = θ = Φ = 0. (32)

where D = ∂
∂y and (29)-(32) constitute an eigenvalue problem

for Ra.

IV. RESULTS AND DISCUSSION

Eigenvalue problem (29)-(32) is solved numerically by
employing shooting and Runge-kutta methods as reported in
[10]. We find eigenvalue Ra for each set of assigned values to
the parameters a, Sa, Le,Ge, γ, Pe. Critical Rayleigh number
for this linear stability theory is as follows

Rac = min
a

Ra(a, Sa, Le,Ge, γ, Pe).

In this section the behavior of critical thermal Rayleigh
number Rac to various input parameters is examined. Ge, γ
represents internal heat generation due to viscous dissipation,
radiation, respectively. For Sa > 0, lower plate is more
concentrated than upper plate and it is reverse for Sa < 0.

When Pe > 0 (upward throughflow), porous layer undergo
hot fluid input which causes increase in global temperature,
and it decreases when Pe < 0 (downward throughflow)
because of injection of cool fluid. This phenomenon is little
complicated when viscous dissipation and concentration based
internal heat source are introduced. When Pe > 0 (upward
throughflow), viscous dissipation and concentration based
internal heat source, both causes increase in system heating
and encourages thermal convection. But for the case of Pe < 0
(downward throughflow), the effects of Ge, γ are competing
factors to cooling action of Pe.

Fig. 1a, 1b represent the behavior of Rac to γ with Le = 10,
Pe = −5, 5, Ge = 0, 1 when Sa = 5, Sa = −5. For
both values of Sa, response of Rac is same. For upward
throughflow (Pe > 0), for small values of γ has stabilization
effect where as γ increases beyond 2, destabilizing effect takes
place. But in the case of downward throughflow (Pe < 0),
destabilization of γ is extremely less. Flow with Ge = 1 is
more stable than Ge = 0 in the case of downward throughflow
and it is converse for upward throughflow.

(a) Sa=5

(b) Sa=-5

Fig. 1: Variation of Rac versus γ for Le = 10.

Fig. 2a, 2b show the response of Rac to Sa, when Le =
10, Ge = 0, 1, γ = 0, 5 for the cases of Pe = 5 (upward
throughflow) and Pe = −5 (downward throughflow). Solutal
Raleigh number Sa has insignificant destabilization effect in
both cases. Increase of Ge from 0 to 1, causes destabilization
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in the upward throughflow and stabilization in the downward
throughflow. γ = 5 has sufficient, less intense to destabilize
the flow when Pe = 5, Pe = −5, respectively.

(a) Pe=5

(b) Pe=-5

Fig. 2: Plot of Rac versus Sa for Le = 10.

Fig. 3a, 3b display variation of Rac versus Le with Pe = 5,
Ge = 0, 1, γ = 0, 5, Sa = 5,−5. In the absence of γ, for
small values of Le which is less than 5, has considerable
stabilizing and destabilizing effects for Sa = 5 and Sa = −5,
respectively. These effects becomes insignificant when Le
exceeds beyond 10. Flow with Ge = 0 is more stable than
flow with Ge = 1 in both the cases. When γ is present,
Le has destabilization effect up to Le = 0.5, and significant
stabilization effect up to Le = 20, and then minor stabilization
effect for the values of Le beyond 20.

Fig. 4 exhibits plot of Rac versus Pe with Le = 10, Sa = 0,
γ = 0, 5, and Ge = 0, 1. In the absence of Ge and γ, both
upward and downward throughflow has stabilizing effect and
plot of Rac is symmetric about Pe = 0. In the case of upward
throughflow, the flow with Ge = 1 is more unstable than
the flow with Ge = 0 and it is reverse for the downward
throughflow. For the value of Pe from -5 to 20, the flow with
γ=5 is more unstable than the flow with γ = 0. But when the
downward throughflow is strong enough (Pe from -20 to -5),
γ has insignificant effect.

(a) Sa=5

(b) Sa=-5

Fig. 3: Graph of Rac versus Le for Pe = 5.

Fig. 4: Variation of Rac versus Pe for Le = 10, Sa = 0.

V. CONCLUSION

Linear stability analysis of double diffusive convection in
a porous layer has been studied where vertical throughflow,
concentration based internal heat source and viscous
dissipation effects are present. Flow with Ge = 0 is more
stable than the flow with Ge = 1 for the case of upward
throughflow. Flow with Ge = 1 is more stable than the flow
with Ge = 0 for the case of downward throughflow. For
upward throughflow, γ has stabilizing effect for small values
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of γ, beyond this, it destabilizes the flow. But in the case of
downward throughflow, γ has very less destabilizing effect.
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