
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1557

Abstract—This survey paper shows the recent state of model

comparison as it’s applies to Model Driven engineering. In Model
Driven Engineering to calculate the difference between the models is
a very important and challenging task. There are number of tasks
involved in model differencing that firstly starts with identifying and
matching the elements of the model. In this paper, we discuss how
model matching is accomplished, the strategies, techniques and the
types of the model. We also discuss the future direction. We found
out that many of the latest model comparison strategies are geared
near enabling Meta model and similarity based matching. Therefore
model versioning is the most dominant application of the model
comparison. Recently to work on comparison for versioning has
begun to deteriorate, giving way to different applications. Ultimately
there is wide change among the tools in the measure of client exertion
needed to perform model comparisons, as some require more push to
encourage more sweeping statement and expressive force.

Keywords—Model comparison, model clone detection, model

versioning, EMF Model, model diff.

I. INTRODUCTION

N software development a very famous technique used is
Model Driven Engineering (MDE). Model Driven

Engineering basically put emphasis on developing and
exploiting domain models as compared to computing
concepts. The basic purpose of MDE approach is to increase
the productivity between the systems.

MDE consists of using high level software devices. MDE
becomes more prevalent in the software engineering. The need
for effective approaches for finding the similarities and
differences among high-level software models becomes
imperative.

Since MDE involves being consumed initial class artifacts
for developers. It not single merit being a stand-alone task but
helps engineers inside additional MDE tasks such as model
composition, inferring and testing of model transformations
[1].

The model comparison is important in MDE. There are
generally not any definitive surveys towards the model
comparison research. There are few papers that touch on the

Junaid Rashid is a student of MS(CS) with the COMSATS Institute of

information Technology, Wah Pakistan. (Phone: 0343-5079668; e-mail:
junaidrashid062@gmail.com).

Dr Waqar Mehmood is Assistant Professor with the COMSATS Institute
of information Technology, Wah Pakistan. (Phone: 0300-5220513, e-mail:
drwaqar @ ciitwah. edu. pk).

Dr Muhammad Wasif Nisar is Associate Professor with the COMSATS
Institute of information Technology, Wah Pakistan. (Phone: 0300-9113482; e-
mail: wasifnisar @ gmail.com).

top and they examine only very few techniques and some
specific models.

In this paper, we discuss the current state involving model
comparison research along with discuss the area’s in future
directions.

The purpose to describe the approaches to accomplish
model comparison the numerous techniques are taken and
their models are categorized. This survey works extremely
well reference guide for developers organized through the
types of models being compared. If they must work with the
specific model type they can use this survey to recognize the
approach is usually right regarding them or not. The paper
background all about models which categorizes and describes
the existing model comparison approaches by the type and
subtype that they compare summary and future directions
regarding the model comparison are discussed in this paper.

Section II discusses the different Model step by step. In
Section III we give summary and future direction and in the
last section, conclusion of this paper has been given.

II. DIFFERENT MODEL

The model comparison in model driven engineering also
refers straight on the act of involving, identifying similarities
and differences between model elements. The versioning,
model clone detection, model comparison is the additional
areas of model driven engineering.

A. Model Comparison

The technique in [1] describes that model comparison is an
operation. It classifies the elements into four categories:
1. Elements match and confirm.
2. Elements item match and do not confirm.
3. Elements that do not match in addition to within the

domain connected with comparison.
4. Elements items do not match along with usually are not

on the domain connected with comparison.
Matching refers for the elements. It represents the artifact

even though conformance can be additional matching criteria.
The example involving non-conformance is UML class
diagram.

In the context of model versioning, model comparison has
been decomposed directly into three phases’ calculation,
representation, and visualization [2].

B. Model Versioning

The need regarding collaboration among teams throughout
MDE projects will be critical. Traditional software projects
achieve the Version Control Systems (VCS) in the same way
CVS along with Subversion. Similarly intended for MDE will

A Survey of Model Comparison Strategies and
Techniques in Model Driven Engineering

Junaid Rashid, Waqar Mehmood, Muhammad Wasif Nisar

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1558

be imperative. The model may work independently but later
on always be able to reintegrate updated versions into the
main project repository. Traditional VCS methods do not run
nicely in products as they are unable to handle model specific
elements much like the “dangling reference” problem and
others [3].

Model versioning will be broken in to various other phases
by various other people [4]. Generally, it is usually seen
regarding model comparison or matching the model elements
correspond to help in detection of differences and conflicts.

C. Model Clone Detection

The example of model comparison being consumed in a
crafted context is usually model clone detection. In traditional
software projects a good code clone refers for the collections
involving rule that happen to be such as single in a number of
measure associated with similarity [5]. One common reason
that code clones arise inside these projects may be the
implementation of a similar concept throughout ones system.
The problem in code clones is a great change in the actual sole
identify that how the system must be updated in multiple
places. The research in code clones is very mature. There are
numerous techniques and tools for the exchange in them [6].

The analogous problem involving model clones refers to
groups associated with model elements which are exhibited to
be able to become similar in several defined fashion [7]. The
comparison with clone detection, research in model clone can
be quite limited [8].

D. Model Comparison Strategies and Techniques

In this section we categorize existing model comparison
methods and discuss the strategies, techniques of any model
comparisons.

The technique compares UML devices and uses their
UUIDs are actually proposed [9]. The method transforms
UML machines to graphs next traverses each tree level with
the purpose regarding searching for identical UUIDs. The
current process takes straight into differences among the
matched model elements like features and relationships.

The technique in [10] for model matching derives the
signature-match rules based towards abstract syntax of a Meta
model describing the modeling languages. Specifically, they
say that three equipment matches if they belong towards same
Meta class have the same title and also the same primary
context, such as the current surrounding structure of the model
comprised of neighbors along with descendants. They state
how the method is actually extended to help work with any
MOF based modeling languages. The additional rules are
actually further through extending the model with appropriate
stereotypes which the method can interpret.

A model versioning tool designed to work with many kinds
of UML products in [11] possibly help environments. It does
not perform model matching just like almost all elements are
usually linked to the previous version, starting with baseline
version. Differences and conflicts are generally detected from
processing XML Metadata Interchange (XMI) files in addition

to using UML-specific knowledge in order to calculate which
elements have been added, modified or maybe deleted.

In [12] produced the current Mqlone tool to experiment
with the idea associated with detecting UML model clones.
They convert XMI files via UML case models along with turn
them in to Prologue.

EMF Models

Eclipse Modeling Framework (EMF) devices are MOF
Meta devices. The idea will certainly define Meta models such
as UML. They use the Eclipse development environment.
EMF Compare [13] is actually an Eclipse project rather
compared to relying on EMF models UUIDs. They used
similarity based-matching to allow the tool to always be added
generic and helpful within a good number of situations. The
matching calculation will be according to various statistics and
also metrics that happen to be combined to help generate a
match score. This includes analyzing ones name, content,
type, along with relations of an elements.

The Top Cased technique in [14] is a project providing in
MDE environment that benefits EMF equipment and created
straight with regard to the measures critical applications and
systems. They perform the matching and differencing using
static identity-based matching. Another model versioning tool
[15] item will probably make use of any EMF-based model.
This approach they do both version-specific comparisons like
Odyssey VCS, termed syntactical and semantic comparisons.
Semantic comparisons are happened to be completed from
semantic views. Semantic views throughout the actual context
are usually the resulting models that come by the user-defined
model transformation. They execute towards the original
equipment being compared to provide device meaning from a
personalized view regarding interest these transformations are
specified in the Atlas Transformation Language.

E. Model Matching Approaches

The different approaches for the Model matching are
discussed. Fig. 1 shows the overall scenario of these all
approaches.

Fig. 1 Model Matching approaches

1. Static Identify Matching

In this approach each model can be constant and non-
volatile identifier at this creation. Therefore, the basic model
can be based on the corresponding identifiers [16] as was
discussed in [17]. The advantage of this approach that
approach is that it not takes any perception forms the user and
approach also fast. The other point this approach cannot be

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1559

used for the Model that it can be independently constructed
from the each other and the model representation technologies
not support the maintenance of the identifiers that can be
unique. The set notation loosely [18] the symmetric delta may
be written as:

(v1, v2) = (v1 n v2) [(v2 n v1)]

Signature-Based Matching

In [19] the authors can be proposed and discuss the all
limitation of the static based matching and gives a new
method of signature based matching. In this method to identify
the model is not the static but the signature can be calculated
from the user defined function as the language of model [20].
The method of model that can be independently made, also be
comparing from with each other’s and this approach not only
dependent on the identities. In this method the static-identify
approach no effort can be required. Rather the developer can
make different function that can used to calculate the different
model identities.

Similarity-Based Matching

In Static Identity based matching and in signature based.
matching the elements of the matching models were matched
on the basis of true/false identities but static or dynamic
matching is applied due to which these approaches represent
the models in the form of typed attribute graphs and on the
base of the similarities between the properties of the elements
of matching models they identify the similarities between the
elements of the matching models. However, all the properties
of model elements are not of equal importance for matching
model. It is more likely to match the classes with matching
names than that of matching classes with matching values in
the abstract feature. Therefore, such algorithms are needed to
be provided which are related to similarity based algorithms
along with configuration which specifies relative weight of its
each feature. The syntactic information of the element is also
called its signature, hence called signature-based matching
[21].

Language Specific Matching Algorithm

This portion contains matching of the algorithm designed
for specific modeling language to discusse the .UML Diff in
[22] and the work in [23] where state charts of the UML
models are targeted, respectively. In order to provide accurate
results this technique join the semantics of targeted languages,
to provide accurate outcomes, this is the main advantage of
this matching technique and it also reduces the search space.
When comparing UML models, when we are matching the
two classes with the same name whatever their package
structure is the UML specific types of elements. Moreover, it
can integrate the knowledge that in order to reduce the number
of comparison to increase performance to match only those
operations whose classes are known to match, having same
parameters and properties. When modeling a system using
UML that is to be applied in a single inheritance language like
Java, then simplifications can be associated by the algorithm
based on particular feature’s value, while the value of their

general properties can be ignored. Although, all these benefits
needs much work, as in static identity based matching
approach no user effort is needed while in signature based
matching approach the only right of signature generator, while
in language specific matching method to specify complete
matching algorithm which needs a lot of effort. To make the
custom match algorithm development, they use methods like
EMF compare which provides a set-up which is able to
computerize the unimportant parts of the contrast procedure,
and allow the developers to focus on the method for
comparison.

State-Based Tracking Changes

State based tracking can be used for the comparing two
models for example the version and its successor after the
change occurred. This activity has two steps one is the
matching and ether is the comparing. In the comparing phase,
the each node in the one phase and the other node is found on
other phase. The matching can be used for the matching the
similarity of the node. If the model uniquely identifies then it
is O (1) on the other hand the O (n2) can be used for the n
nodes [24], [25].

(a)

(b)

(c)

Fig. 2 (a) Model transforms (b) Diff calculation (c) Migration tool
gen

F. Evolution of Data Intensive Web Application by Model
Driven Techniques

Model driven engineering will for the development of the
web application the approach can tell about the migration and
data intensive approach for the web application. Model
differencing techniques are detecting the differences [26] that
will be the migration facility. The migration facility can be
detecting the modification during the entire model’s lifecycle
and also the aspects that are not we derive from the source

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1560

models, the approach can be confirmed on the web content
and the WebML. The general migration approach is shown in
Fig. 2.

G. Model-Driven Development of Web Information Systems

In this approach model driven approach for the web
application is called the MODEWIS (Model Driven
development of web applications).In this MDE approach
OMG’s Model driven Architecture principles are made
between the three levels of abstraction [27]:
 The Computational Independent Model(CIM)
 The Platform Independent Model (PIM) level
 The Platform Specific Model (PSM) level.

Further they can differentiate two levels in the Platform
Specific Model level:
 Abstract-Platform Specific Model (APSM)
 Specific-Platform Specific Model (SPSM).

This will be shown that the MODEWIS is the evolutionary
for the model driven process.

The APSM common web characteristics but in the SPSM
provide the real implementation of the platforms.

H. Model Matching Approaches Table

Table I shows the model matching approaches.

TABLE I
MODEL MATCHING APPROACHES

Approaches
Static Identity-

based
Similarity-

based
Customization Support

Alenen and
Porres[28]

UML Specific - -

DSMDiff[29] -
Meta Model
Independent

-

EMF
Compare[30]

-
Meta Model
Independent

Custom matching
algorithm

SI Diff[31] -
Meta Model
Independent

Weight configuration

TOPCASED[32]
Meta Model
Independent

 -

UML Diff[33] - UML Specific -

ECL[34] -
Meta Model
Independent

DSL for Specifying
custom

I. Met model-Agnostic Approaches

The comparison procedures probably confirm the arbitrary
Meta model assuming the idea to catered properties.

Examples involving Met model-independent techniques this
show similarity-based matching methods include the current
Epsilon Comparison Language [35] along with the Domain
Specific and Model Difference DSMDiff [36]. DSMDiff is
usually the extension connected with perform carried out in
UML model comparison techniques. DSMDiff functionalities
both similarity and also signature based matching. The
similarity based matching focuses towards similarity regarding
edges among additional model nodes. DSMDiff evaluates
differences between matched elements in addition to consider
them routed deltas. While DSMDiff was formulated making
use of DSMLs specified for the Generic Modeling
Environment (GME), one’s strategy will be for longer times
make use of any kind of DSML creation tool. DSMDiff
propose allowing user interaction that enables one to select the

mappings (matches) via listing connected with applicable
candidates.

Epsilon Comparison Language (ECL) are developed
following DSMDiff and also SiDiff and attempts in order to
address ones fact that it is predecessors do not give intended
for model in order to configure language specific particulars.
The idea can help in matching model elements via different
meta models[37]. That is accomplished with an imperative
high-level manner. ECL makes it possible for modelers to help
specify model comparison rule-based algorithms to identify
matched elements inside additional models.

A plugin with regard to meta-case applications are
developed [38].This is effective model version comparison
regarding devices defined from a meta-Case tool. Meta-Case
tools run similarly to help its case counter parts except these
are generally not constrained through a good particular
schema and Meta model. The particular plugin matches all the
elements through the unique identifiers and calculates the
differences just like sent deltas [39] describe a graph-based
VCS. This really is quite similar with item operates in Meta
case products and matches them applying baselines and
unique identifiers. Differences are calculated as routed deltas
with in respect to previously versions.

In [40] a version control system developed and the idea will
detect both structural and textual differences between versions
of a wide array regarding software artifacts. The actual
approach utilizes similarity-based matching via assigning just
about all artifacts an identifier. It encapsulates the current
element and also representing them in the same way nodes
within a sent attributed graph, just like model clone
approaches.

In [41] discussed the prerequisites pertaining to difference
representations. The current Meta modeling techniques, like
MOF, not satisfy them. They provide their particular meta-
modeling program to define differences to be able to it. They
give the model comparison approach in addition to prototype
that allows end user configurations associated with what
combination of a four model-matching techniques are used.
They provide the examples where they extend to perform
accomplished previously regarding SiDiff, combining with
some other matching techniques, similar to using a UUID. The
generality comes in a cost of any large range connected with
configuration, work, and also user interaction.

There are measures that translate products in another
language or even notation. The item maintains semantics of
the machines to facilitate model comparison. Individual
example would be the run done [42] of which they propose an
abstract equivalence notion regarding object models, within
some other words, the means of representing objects that
enables them for always be compared. They use an alphabet,
which is the set regarding relevant elements that is to be
compared, and views, that are mappings. The item express the
different ways that individual element with single model can
be interpreted by elements of a different model. Similarly, in
[43] the semantic diff operators are discussed, that will
represent the relevant semantics associated with each models.
Semantics tend to be represented with the utilize of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1561

mathematical formalisms supply the tools cddiff and also
addiff with regard to class diagram differencing in addition to
activity class diagram differencing, respectively. Some other
examples regarding translating models in another language
include UML models being translated straight into Promela
equipment [44]-[46] although the actual operate do not intend
to perform model comparison nor differencing explicitly.

QVT-Relations (QVT-R) permits with regard to a great
declarative specification connected with two-way (bi-
directional) transformations additional expressive than the
current additional QVT languages. The particular
expressiveness makes it possible for pertaining to the form
involving model comparison through its check only mode,
which is to be the mode by which products are generally
checked for consistency rather as compared to generating
changes [47] in brief; game theory is applied to be able to
QVT-R by having a verifier and refuter. The verifier confirms
the settlement will certainly succeed and the refuter’s
objective is actually in order to disprove it.

J. Methods for Behaviour/Data-Flow Models

1. Simulink and MATLAB Models

In [48] will be an approach that uses ideas coming from
graph theory in addition to can be applicable in order to any
model that is represented being a data-flow graph. Machines
are usually first flattened in addition to unconnected lines
usually are removed. Subsequently, these are generally
normalized from shipping each of the blocks in addition to
lines found inside the models. Similarly, eScan along with
aScan algorithms attempt to be able to detect exact matched
and also approximate clones, respectively [49]. Exact-matched
clones usually are groups associated with model elements
having the same size and aggregated labels, in which contain
topology information along with edge and node brand
information. Approximate clones tend to be the individual that
happen to be not exactly matching but fit a number of
similarity criteria. AScan uses vector-based representations
regarding graphs. The idea monitor a good sub-set of
structural has about the graph. This will be later refuted,
however, involving Clone Detective [50]. AScan will be
capable to detect approximate clones although Clone
Detective will be not. Much like Clone Detective, most of
these algorithms utilize similarity-based matching.

In [51], method deal with syntactic clones with structural
similar copies detected. Applying normalization strategies its
graph use transformations, they extend these types of
approaches to repay semantic clones this will probably have
similar behaviour but other structure.

Most recently in [52], Simulink are explaining that detects
the miss clones in Simulink models. This can be performed
coming from modifying existing code clone procedures to use
the current textual representations of a Simulink models. In
comparison to Clone Detective, they detect the same exact
clones along with several extra near-miss ones.

2. Sequence Diagram

In [53] discover duplication with series diagrams. They
convert sequence diagrams in the array in addition to represent
this array as being a suffix tree. The tree will be traversed
along with duplicates are generally extracted from looking for
its longest common prefix, or elements. This lead for the leaf
node, associated with two suffixes. Duplicates usually are
defined being a set connected with sequence-diagram
fragments that contain the same elements and find one same
sequence-diagram was made relationships. Such as the model
clone approaches discussed, the method utilizes a variation
involving similarity-based matching. Equally this comparing
the graph representation of the fragment‘s elements.

3. State Chart Diagrams

In [54], match state chart diagrams for the model merging.
They carry out via heuristics that include looking on
terminological, structural, along with semantic similarities
between models. The heuristics are generally split directly into
two categories. The static heuristics work with attributes
without having semantics, much like the names, features of
elements, and behavioural heuristics, which obtain pairs the
item, have similar dynamic behaviour. For the employ
associated with heuristics, the approach requires a domain
expert go shopping through the relations in addition to
complete or maybe remove relations, accordingly, to get ones
required matching relation. This approach utilizes both
similarity-based matching for the static heuristics in addition
to custom language were made matching through dynamic
heuristics.

K. Methods for Structural Models

This division discusses methods for the structural models.
The comparing and also differencing software structural
diagrams performed through [55].

1. UML Structural Models

In [56], custom language specific matching name similarity
and UML structure-similarity to name matching elements.
These kinds of metrics are usually combined and also
compared against a great user-defined threshold. It is intended
to be a model versioning reasoned. The item discovers
changes designed through solitary version of any model for
one to another.

Reference [57] focuses with UML class diagram
differencing. It uses the combination involving static identity-
based and also similarity-based matching in the evaluation
function, in which the current quality of a match. Similarly,
[58] can be a plugin produced for its Fujaba (From Uml in
order to Java and Back Again) tool suite that enables for end
user sent matching regarding elements. Specifically, users will
probably Click match candidates that happen to be ranked
according to be able to a great similarity measure it is a
combination regarding static identity-based in addition to
similarity based matching, including UMLDiff..

Reference [59] utilizes signature-based matching to be able
to compare in addition to compose UML class equipment to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1562

assist within Aspect-oriented modelling [60]. The matched
based on it is signatures, or even property values associated
from the class. Each signature features a signature type, that is
to be the set associated with properties. Using the KerMeta8,
an model querying language, the current signatures consumed
pertaining to comparison are usually derived from the tool
based towards the possesses it's about the meta model.

In [61] translate UML class diagrams in to ALCQI, a
“simple” description logic representation. They show that this
is possible to reason information on UML class diagrams. In
the same way ALCQI description logic representations and
gives an encoding coming from UML class diagrams in order
to ALCQI. Although the translation does not maintain the
entire semantics of an UML classes, it preserves enough of the
idea to confirm intended for class equivalence. They use
UML-specific semantics, it argue that there is usually an
application form regarding language-specific matching.

In the [62] extend perform on semantic differencing and
provide a translation prototype, called CD2Alloy. The idea
converts UML classes in Alloy. The Alloy signal consists of
constructs. It recognize the corresponding elements regarding
to UML class diagrams and will allow intended for semantic
comparisons, similar to determining if solitary model can be a
refinement regarding another. It considered being a custom-
language catered comparison due to the Utilize regarding
UML semantics.

2. Met model-Agnostic Approaches

Preliminary operate on model comparison was carried out
through [63] in which they devised a good comparison
approach with regard to any kind of structured document.
They convert the information representing the current
statement structure in a graph consisting regarding nodes the
item have identifiers derived because of the corresponding
elements they represent. The approach, that is to be analogous
towards the model clone identification techniques, benefits
similarity-based matching in addition to describe differences
in relation to delivered deltas.

In [64] very including UMLDiff except SiDiff uses the
simplified underlying comparison model throughout order to
help handle any kind of equipment held in XMI format.
Similarly in order to UMLDiff, the idea functionalities
similarity based metrics. That is performed throughout respect
for the elements’ similarity metrics. An example of a weighted
similarity is using a class element get ones similarity involving
its class name weighted current highest. No matter whether a
good uniquely identifying element is usually matched, these
types of being a class name, these are straight identified like a
match. That is followed via top-down propagation involving
the matching pair. The particular top-down approach will
allow for its algorithm to reduce differences through
evaluating a good correspondence table that is the output of a
matching phase. Similarly towards the translation associated
with UML class diagrams in ALCQI [65], propose a great

comparison measure with regard to description logics,
including anybody taken in the Semantic internet. This is
completed through existing ontology semantics. They describe
a good semantic similarity measure. It is able operate the
semantics of your ontology that the concepts refer to.

3. Methods for Product Line Architecture

In [66], the comparison involving the products line
machines. The assumption inside this function will be how the
comparison can be being carried out between only two types
of the same artifact. Comparison will be carried out
recursively along with the increasingly fine grained equally
ones algorithm delves deeper in to the current product-line
hierarchy. The particular approach engages similarity-based
matching: along elements with the hierarchy compare
interfaces, optionality, along with type; along with higher
level elements compare ones elements contained throughout
them. Differences are usually represented just as dispatched
deltas.

In [67] discussed the good framework for comparing
individual products. They utilize similarity-based matching,
The idea is, items are generally viewed as model elements
along with a great match is actually defined Just as your own
case where two model elements have features which can be
similar enough to always be above the defined weighted
threshold. The authors note the idea “(their) refactoring
framework will be applicable to help a variety of model types,
such as UML, EMF or Mat lab/Simulink, and in order to
different compare, match in addition to merge operators”.

4. Methods for Process Models

In [68] discussion the need for ascertaining differences
among software development process models and also outline
a difference system would require. They devise Delta-P [69],
in which may use numerous UML technique models. Delta-P
converts system equipment into Resource Description
Framework (RDF). The next performs a great identity-based
compare along with calculates differences. They Utilize static-
identity based matching as unique identifiers. Differences are
represented like delivered deltas, which might be grouped
together to be able to application form higher level deltas.
Similarly, [70] discuss three similarity metrics this help
compare maintained process models: node matching
similarity, in which compares ones labels and attributes
attached in order to program model elements; structural
similarity, that evaluates labels along with topology; and
behavioural similarity, that looks on labels together with
causal relations through the technique models.

III. SUMMARY AND FUTURE DIRECTION

Table II summarizes the techniques discussed in the paper
organized through the type along with sub type involving
model to compare.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1563

TABLE II
DESCRIPTION OF MODELS

Types Of Model Sub type of model Specific Approach Tool Matching Strategy+ Primary Use#

Multiple type of
Models

Uml Models

Alnan Static Identity based Model Versioning

RSA Static Identity based Model Versioning and Model Merge

Obsi Static identity Model Versioning

Odyssey vcs - Model Versioning

Selonen Signature Based Model Merge

EMF Models

EMF compare Similarity based Model Versioning

Top cased Static identity Model Versioning

Smover Static identity Model Versioning

Modeling Static identity and Similarity based Model Versioning

Meta Models Agnostics
Independent

ECL Similarity based
Model Merge and Model Transformation

Testing

DSM diff Similarity based
Model Transformation Testing

and Model Versioning
Mehra-meta Static identity Model Versioning

Van den brain
Static identity, Similarity based,

Signature Based, Custom Language
Specific

Model Versioning and Model Merge

Nguyen Similarity based Model Versioning

QVT-R Static identity Model Transformation Specification

Data Flow Model

Simulink

Clone Detection Similarity based Verification

Ascan/Nscan Similarity based Verification

Simone Similarity based Verification

UML sequence Diagram Liu Similarity based Verification

state charts Nejati
Similarity based and Custom Language

Specific
Model Merge

Structural Models

UML Models

UML Diff Custom Language Specific Model Versioning

UML Diff Static identity and Similarity based Model Versioning

Reddy Signature Based Aspect oriented Model

Mirador Similarity based Model Versioning and Model Merge

CD2 Alloy Custom Language Specific General Comparison

ALCQI Custom Language Specific General Comparison

MetaModel-Agnostic
Chaw the Similarity based Model Versioning

Serif Similarity based Model Versioning

Product line
Architecture

Any PLA
Chen Similarity based Model Versioning

Rubin Similarity based Model Merge

Process Models Software Process Model Delta-P Static identity Model Versioning

Just as seen in the table, similarity-based matching will be

the all commonly employed strategy. This is clear the item
solitary future direction connected with function within the
particular area will be the focus with tools the idea might
employ equipment. It confirms to help the arbitrary Meta
model. The result is consistent with the recent trend within
domain-specific modeling.

The majority associated with work with model comparison
appears in order to the model versioning. Much of a recent
operate is focusing at model transformation testing along with
model clone detection. The new extensions of existing model
comparison methods are being attempted just like the
extension regarding model clone detection to be able to detect
common sub-structures and patterns inside machines [71].
These kinds of patterns will probably ideally supply from
project engineers for to facilitate analysis along with
assistance on the development connected with future MDE
projects. Many strategies require not any user interaction just
like they function under specific conditions or maybe usually
dynamic enough for to realize the current context or maybe
Meta equipment they are signing with.

IV. CONCLUSIONS

Model comparison is really a relatively a broad research
place this can be very ticks to help MDE. It’s been
implemented in various forms in addition to regarding
numerous purposes, predominantly in model versioning,
merging and clone detection.

We have given a good overview of the area, and have
observed the majority associated with recent strategies
pertaining to equipment belonging to be able to arbitrary meta-
models. Similarity-based matching could be the approach
recognized by almost all methods. Model versioning appears
to be the current just about all common goals for model
comparison up to help the actual point, but it is starting to
shift. Lastly, several approaches demand additional end user
effort to be able to the function model comparison; however it
is to help facilitate flexibility and also strength. Numerous of a
techniques demand no individual interaction because they are
intentionally constrained as well as are generally made to
financial transaction throughout multiple situations.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1564

REFERENCES
[1] D., Paige, Kolovos, R., and Polack, F. (2006). Model comparison: a

foundation for model composition and model transformation testing. In
IWGIMM, pages 13–20

[2] Pierantonio and Brun, A. (2008). Model differences in the Eclipse
modelling framework. The European Journal for the Informatics
Professional, pages 29–34.

[3] K., Seidl, Altmanninge, and Wimmer, M. (2009). A survey on model
versioning approaches. International Journal of Web Information
Systems, 5(3):pages271–304.

[4] Alanen, M. and Porres, I. (2003). Difference and union of
models.Springer-Verlag Berlin Heidelberg 2003: pages 2–17.

[5] Koschke, R. (2006). Survey of research on software clones. Information
and Software Technology 55 (2013),pages:1165–1199

[6] Cordy, Roy, C., J., and Koschke, R. (2009). Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach.
Science of Computer Program-Ming, 74(7):pages:470–495

[7] Deissenboeck, F., Hummel, B., Jürgen’s, E., Schatz, B., Wagner, S.,
Girard, J., and Teuchert, S. (2009). Clone detection in automotive
model-based development. In ICSE: pages 603–612.

[8] Deissenboeck, F., Hummel, B., Juergens, E., Pfaehler, M., and Schaetz,
B. (2010). Model clone detection in practice. In IWSC, pages 57–64.

[9] Ohst, D., Welle, M., and Kelter, U. (2003). Differences be-tween
versions of UML diagrams. ACM SIGSOFT Soft-ware Engineering
Notes, 28(5), pages: 227–236.

[10] Dirk Ohst, Michael Welle and UdoKelter,September 1–5,
2003,Differences between Versions of UML Diagrams, IN
ESEC/FSE’03:pages:1-10

[11] Selonen, P. and Kettunen, M. (2007).Met model-based inference of
inter-model correspondence. In ECSMR: Pages 71–80.

[12] Oliveira, H., Murta, L., and Werner, C. (2005). Odyssey-vcs: a flexible
version control system for UML model elements. In SCM:pages 1–16.

[13] Brun, C. and Pierantonio, A. (2008). Model differences in the Eclipse
modeling framework. The European Journal for the Informatics
Professional: pages 29–34.

[14] Farail, P., Gaufillet, P., Canals, A., Le Camus, C., Sciamma, D., Michel,
P., Cregut, X., and Pantel, M. (2006). The top cased project: a toolkit in
open source for critical aeronautic systems design. ERTS: pages 1–8,
electronic.

[15] Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer,
J., and Quesada, J. (2002). Maude: specification and programming in
rewriting logic. Theoretical Computer Science, 285(2): pages: 187–243.

[16] M. Alanen and I. Porres. Difference and Union of Models. In UML
2003 - The Unified Modeling Language, Springer-Verlag, 2003, volume
2863 of LNCS, pages 2–17.

[17] P. Farail, P. Gaufillet, A. Canals, C. L. Camus, D. Sciamma, P. Michel,
X. Crgut, and M. Pantel. AFIS 2006 Conference, The TOPCASED
project: a Toolkit in Open source for Critical Aeronautic Systems
Designpages:1-6

[18] In ERTS06, 2006.Sabrina Fortsch and Bernhard Westfechtel.
Differencing and merging of software diagrams - state of the art and
challenges. In ICSOFT (SE), pages 90-99.

[19] B. Collins-Sussman, B. Fitzpatrick, and C. Pilato. Inc., 2004, Version
Control with Subversion. For Subversion 1.1. O’Reilly & Associates,
pages:1-299

[20] R. Reddy, R. France, S. Ghosh, F. Fleurey, and B. Baudry. 2005, Model
composition a signature-based approach. In AOM Workshop:pages:1-7

[21] Raghu Reddy, Robert France, Sudipto Ghosh, Franck Fleurey, and
Benoit Baudry. October 2005, Model composition - a signature-based
approach. In Aspect Oriented Modeling,pages:1-7

[22] Z. Xing and E. Stroulia. 2005, UMLDiff: an algorithm for object-
oriented design differencing. In ASE’05. ACM: pages 54–65

[23] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave.
Matching and merging, AT&T Laboratories–Research: pages:1-10

[24] Lindholm, T., Kangasharju, J., Tarkoma, (2006), Fast and simple xml
tree differencing by sequence alignment. In: DocEng '06, ACM
pages:75-84

[25] Treude, C., Berlik, S., Wenzel, S., Kelter, (2007), Difference
computation of large models. In: ESEC-FSE '07, ACM pages:295-304

[26] Antonio, Cicchetti, Davide, Di Ruscio, Ludovico Iovino, Alfonso
Pieantonio (2011). Managing the evolution of data intensive web
application by model driven teachniques,Springer-Verlag,pages:1-31

[27] Ali Fatolahi, Stéphane S. Some. (2014), Assessing a Model-Driven
Web-Application Engineering Approach. Journal of Software
Engineering and Applications, pages:360-370

[28] M. Alanen and I. Porres. Difference and Union of Models. In UML 2003
- The Unified Modeling Language, volume 2863 of LNCS, Springer-
Verlag: pages 2–17.

[29] Yuehua Lin, Jeff Gray & Frédéric Jouault DSMDiff: a differentiation
tool for domain-specific models,pages:1-30

[30] Cédric Brun, Obeo France.(2008) Comparing and Merging Models with
Eclipse An update on EMF Compare.pages:1-36

[31] Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave (2007),
Matching and merging of state charts specifications. IEEE Computer
Society: pages 54–64

[32] Pontisso, N.; French Space Agency, Toulouse; Chemouil, D.
TOPCASED Combining Formal Methods with Model-Driven
Engineering: pages1-12.

[33] Xing and Eleni Stroulia (2005), UMLDiff: An Algorithm for Object-
Oriented Design Differencing Zhenchang.ACM, pages:54-65.

[34] R. Reddy, R. France, S. Ghosh, F. Fleurey, and B. Baudry. (2005)
Model composition - a signature-based approach.AOM,pages:1-7.

[35] Kolovos, (2009). Establishing correspondences between models with the
epsilon comparison language. In Model Driven Architecture-
Foundations and Applications, pages 146–157.

[36] Lin, Y., Gray, J., and Jouault, F. (2007). DSMDiff: a differentiation tool
for domain-specific models. European Journal of Information Systems,
pages: 349–361.

[37] Kolovos, D., Di Ruscio, D., Pierantonio, A., and Paige, R. (2009).
Different models for model matching: An analysis of approaches to
support model differencing. In CVSM: pages 1–6.

[38] Mehra, A., Grundy, J., and Hosking, J. (2005). A generic approach to
supporting diagram differencing and merging for collaborative design.
In ASE, pages: 204–213.

[39] Nguyen, T. (2006). A novel structure-oriented difference approach for
software artifacts. In CSAC, volume 1, pages: 197–204.

[40] Van den Brand, M., Protic, Z., and Verhoeff, T. (2010). Generic tool for
visualization of model differences. In IWMCP, pages: 66–75.

[41] Gheyi, R., Massoni, T., and Borba, P. (2005). An abstract equivalence
notion for object models. Electronic Notes in Theoretical Computer
Science, pages:3–21.

[42] Maoz, S., Ringert, J., and Rumpe, B. (2011). A manifesto for semantic
model differencing. In ICMSE, MOD-ELS’10, pages: 194–203.

[43] Henry Chesbroug, JIM Spohrer A Research manifesto for Services
sciences. In Communication of the ACM, July 2006, vol 49, pages: 35-
40.

[44] Chen, J. and Cui, H. (2004). Translation from adapted UML to promela
for corba-based applications. Model Checking Software, pages: 234–
251.

[45] Latella, D., Majzik, I., and Massink, M. (1999). Automatic verification
of a behavioural subset of UML state chart diagrams using the SPIN
model-checker. Formal Aspects of Computing, pages: 637–664.

[46] Lilius, J. and Paltor, I. (1999). Formalising UML state ma-chines for
model checking. UML, pages: 430–444.

[47] Stevens, P. (2009). A simple game-theoretic approach to checkonlyqvt
relations. Theory and Practice of Model Transformations, pages:165–
180.

[48] Deissenboeck, F., Hummel, B., Jurgens, E., Schatz, B., Wagner, S.,
Girard, J., and Teuchert, S. (2009). Clone detection in automotive
model-based development. In ICSE, pages:603–612.

[49] Pham, N., Nguyen, H., Nguyen, T., Al-Kofahi, J., and Nguyen, T.
(2009). Complete and accurate clone detection in graph-based models.
In ICSE, pages: 276–286.

[50] Deissenboeck, F., Hummel, B., Juergens, E., Pfaehler, M., and Schaetz,
B. (2010). Model clone detection in park-tice. In IWSC, pages:57–64.

[51] Al-Batran, B., Schatz, B., and Hummel, B. (2011). Seman-tic clone
detection for model-based development of embedded systems. Model
Driven Engineering Languages and Systems, pages: 258–272.

[52] Alalfi, M. H., Cordy, J. R., Dean, T. R., Stephan, M., and Stevenson, A.
(2012). Models are code too: Near-miss clone detection for Simulink
models. In ICSM, volume 12.pages:1-10

[53] Liu, H., Ma, Z., Zhang, L., and Shao, W. (2007). Detecting duplications
in sequence diagrams based on suffix trees. In APSEC, pages:269–276.

[54] Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., and Zave, P.
(2007). Matching and merging of state charts specifications. In ICSE,
pages:54–64.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1565

[55] Rho, J. and Wu, C. (1998). An efficient version model of software
diagrams. In APSEC, pages:236–243.

[56] Xing, Z. and Stroulia, E. (2005). UMLDiff: an algorithm for object-
oriented design differencing. In ASE, pages:54–65.

[57] Girschick, M. (2006). Difference detection and visualization in UML
class diagrams. Technical University of Darmstadt Technical Report
TUD-CS-2006-5, pages: 1– 15.

[58] Barrett, S., Butler, G., and Chalin, P. (2010). Mirador: a synthesis of
model matching strategies. In IWMCP, pages:2–10.

[59] Reddy, R., France, R., Ghosh, S., Fleurey, F., and Baudry, B. (2005).
Model Composition - A Signature-Based Approach.pages:1-7

[60] Elrad, T., Aldawud, O., and Bader, A. (2002). Aspect-oriented
modeling: Bridging the gap between implementation and design. In
Generative Programming and Component Engineering, pages: 189–201.

[61] Berardi, D., Calvanese, D., and De Giacomo, G. (2005). Reasoning on
UML class diagrams. Artificial Intelli-gence, pages:70–118.

[62] Maoz, S., Ringert, J., and Rumpe, B. (2011). Cd2alloy: Class diagrams
analysis using alloy revisited. Model Driven Engineering Languages and
Systems, pages: 592– 607.

[63] Chawathe, S., Rajaraman, A., Garcia-Molina, H., and Widom, J. (1996).
Change detection in hierarchically structured information. In ICMD,
pages: 493–504.

[64] Kelter, U., Wehren, J., and Niere, J. (2005). A generic difference
algorithm for UML models. Software Engineering, pages:105–116.

[65] Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W., Seidl, M.,
Schwinger, W., and Wimmer, M. (2008). AMOR-towards adaptable
model versioning. In MCCM, volume 8, pages: 4–50.

[66] Chen, P., Critchlow, M., Garg, A., Van der Westhuizen, C., and van der
Hoek, A. (2004). Differencing and merging within an evolving product
line architecture. PFE, pages: 269–281.

[67] Rubin, J. and Chechik, M. (2012). Combining related products into
product lines. In 15th International Conference on Fundamental
Approaches to Software Engineering,pages:1-15

[68] Soto, M. and Munch, J. (2006). Process model difference analysis for
supporting process evolution. Software Process Improvement, pages:
123–134.

[69] Soto, M. (2007). Delta-p: Model comparison using seman-tic web
standards. Softwaretechnik-Trends, pages:27–31.

[70] Dijkman, R., Dumas, M., Van Dongen, B., Karik, R., and Mendling, J.
(2011). Similarity of business process models: Metrics and evaluation.
Information Systems, pages:498–516.

[71] Stephan, M., Alafi, M., Stevenson, A., and Cordy, J. (2012).Towards
qualitative comparison of simulink model clone detection approaches. In
IWSC, pages:84–85.

Junaid Rashid has done his Bachelor of Science (Computer
Science) from Department of Computer Science, COMSATS
Institute of Information Technology, Wah, Pakistan. He has
been interest in research domains like Semantic, Semantic
Web, Software Configuration management, Model versioning,

Model Diff, Model Merge, and Model Driven Engineering etc. Currently, he
is a regular student of Masters of Science (Computer Science) in Department
of Computer Science, COMSATS Institute of Information Technology, Wah
campus, Pakistan.Email:junaidrashid062@gmail.com,contact#:0343-5079668

Dr Waqar Mehmood is an Assistant professor with the COMSATS Institute
of information Technology, Wah Pakistan. Contact #:0300-5220513;
Email:drwaqar@ciitwah.edu.pk

Dr Muhammad Wasif Nisar is an Associate professor with the COMSATS
Institute of information Technology, Wah Pakistan. Contact #:0300-
09113482; Email:wasifnisar@gmail.com

