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Influence of Internal Heat Source on Thermal
Instability in a Horizontal Porous Layer with Mass
Flow and Inclined Temperature Gradient
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Abstract—An investigation has been presented to analyze the
effect of internal heat source on the onset of Hadley-Prats flow in
a horizontal fluid saturated porous medium. We examine a better
understanding of the combined influence of the heat source and mass
flow effect by using linear stability analysis. The resultant eigenvalue
problem is solved by using shooting and Runga-Kutta methods for
evaluate critical thermal Rayleigh number with respect to various
flow governing parameters. It is identified that the flow is switch from
stabilizing to destabilizing as the horizontal thermal Rayleigh number
is enhanced. The heat source and mass flow increases resulting a
stronger destabilizing effect.

Keywords—Linear stability analysis, heat source, porous medium,
mass flow.

I. INTRODUCTION

N the last few decades, the study on thermal convection

driven by an internal heat source has been attracted by
many researchers due to its importance in real life applications.
The present problem is also in connection with the above
study induced by horizontal mass flow. It has many practical
applications such as underground energy transport, cooling
of nuclear reactors, geophysical and environmental problems
etc. Specific important areas are like the food processing,
oil recovery, underground storage of waste products and
thermal convection in clouds [1]. The mechanism of thermal
convection has a great importance in environmental problem
processes [2].

Some of the authors reported on convection by internal
heat sources. Few papers are concerning to the experimental
investigation by Schwiderski et al. [3] and Tritton et al. [4].
Roberts [5] and Thirlby [6] done the theoretical analysis on the
above experimental results. Parthiban and Patil [7] investigated
the thermal convection due to non-uniform heating boundaries
with inclined thermal gradients in the presence of internal heat
source, followed by the extension of anisotropic porous layer
studied by Parthiban and Patil [8]. The effect of internal heat
source with inclined porous layer for various flow parameters
are analyzed by Barletta et al. [9], where both boundaries
are isothermal and keep them at same temperature. Rionero
and Straughan [10] investigated the linear and nonlinear
instability in presence of heat generation and variable gravity.
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Extensive reviews of the theory and applications can be seen
in the articles of Alex and Patil [11]. Hill [12] reported
on a fluid-saturated porous layer with concentration based
internal heat generation, in that, he studied the linear and
energy stability analysis of thermosolutal convection. Chamka
[13] analyzed the influence of an internal heat source or
sink for hydromagnetic simultaneous heat and mass transfer
by using similarity solutions. Thermosolutal convection in a
saturated anisotropic porous medium with internal heat source
is reported by Bhadauria [14]. Borujerdi et al. [15] examine
the study state heat conduction with uniform heat source where
solid and fluid phases are at different temperature. Then after,
Borujerdi et al. [16] studied the influence of Darcy number on
the critical thermal Rayleigh number in onset of convection
with uniform internal heating. A collection of comprehensive
theories and experiments of thermal convection in porous
media on real life problems were surveyed in the recent book
of Nield and Bejan [17].

The purpose of this theoretical study is to analyze the
situation in which both the effects of heat source and mass
flow are present simultaneously. The governing equations have
been transformed into eigenvalue problem, and it is solved
numerically by using Shooting and Runga-Kutta method for
various modes of instability. We organize the paper in the
following steps. Section II deals with the governing equations
of the model considered and section III followed by basic
state solution, linear analysis and numerical scheme described
in section IV and section V. Results are analyzed in section
VL

II. MATHEMATICAL ANALYSIS

An infinite shallow horizontal fluid saturated porous
medium with thickness d is considered. z* -axis is taken
vertically upward and there is a net flow along the direction
of z* -axis with magnitude M™*. The vertical thermal
differences along the boundaries is V6. Further, we imposed
the horizontal thermal gradient vector as (f8p,, fg,) and
the internal heat source is Q. The linear Boussinesq
approximation is applicable. The flow in porous layer is
formed by the Darcy law and the governing equations in
dimensional form are

V¢ =0, (1)
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with the following boundary conditions:
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Here, the Darcy velocity notated as ¢ = (u, v, w/), Kk is a unit
vector along the vertical direction. P is the pressure and 6 is
temperature. Where the subscripts f and m are referred to fluid
and porous medium, respectively. Here K is the permeability
of the porous layer. Also ¢, p, p and k,, denote the specific
heat, density, viscosity and thermal conductivity, respectively.
Also 7y is the thermal expansion coefficients in the porous
medium.

The following dimensionless variables were used to
non-dimensionalize the governing equations.

’ ’ ’
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Here, R. denote the vertical thermal Rayleigh number and

the horizontal thermal Rayleigh numbers are referred as
follows

Ro— pogre K d?Bo, R pogre K d* By,

’ w0 Py,

The above scaling for dimensional variables and the horizontal
thermal Rayleigh numbers was introduced by Weber [18] and
used extensively by Nield [19]. Under these dimensionless
variables, the governing equations (1) - (3) take the form

V-g=0, )
¢+ VP =06k, )
%+q-V9:V20+QRZ, (6)

and the conditions of the plates become

1

=0, 0=—=-
w =0, 5

1
(£R.) — R,z — R,y at z= 15. (7

From (4) - (6); we observe that all the thermal Rayleigh
numbers involved in the boundary condition (7).

III. STEADY-STATE SOLUTION

The flow of governing equations (4) - (6), subject to (7)
has a basic state solution as follows

with
uo 92 __09P
S 0z T oy’
oP
D*0 = —uR, —vR, — QR. . 9)
Where D = d%, we have a net flow (M) in the horizontal

direction, then fEﬁQ u(z)dz = M and fiﬁQ v(2)dz = 0. We
obtain the basic state solution in the form of flow velocity,
temperature in the medium.

us = Rez+ M, vi=Ryz, ws,=0 (10)

24

where A = R,% + Ry2 .

IV. LINEAR STABILITY ANALYSIS

We assume the disturbance quantities in the form of
¢g=qs+q 0 =0,+0 and P = P, + P. By substituting these
perturbations in dimensionless governing equations (4) - (6),
further, we get a linear system by neglecting the products of
perturbations

V-g=0, (12)

G=-VP+60k, (13)
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where

Vo, = — <Rx,Ry,Rz A [1—122%] + (MR, + QRz)z) .

24

The conditions at the plates are

_ — 1
w=0, #=0 atz:ii. (15)

These conditions in (15) says that, there is zero perturbation

in velocity and temperature at the plates. We are looking for
a solution of (12) - (14) in the form of normal modes

[.6.P] = [4(2).0(=). P ()] exp {i[ke + Iy — ot]} .

(16)
further eliminate P from (13), we get
(D* —a®)w+a?0 =0, (17)
(D? —a® +i(oc — Mk — ku, — lv,)) 0
(18)

1 ~
+ = (kR +1R,) Dw - (Da) w=0,
where

DO =-R, - % (122> —=1) = (MR, + QR.)z. (19

The above (17) - (18) subject to w = 6 = 0 at both the plates
z = % and z = —% constitute an eigenvalue problem for
vertical thermal Rayleigh number R, with a, R, Ry, k and [
as parameters. In the above, o« = v/k2 + [? is the overall wave

number.

V. NUMERICAL SOLUTION

To find an accurate solution to above (17) - (18) are solved
based on Shooting and Runge-Kutta method. This scheme is
necessarily applied by converting the boundary value problem
into an initial value problem. Thus, the boundary conditions
on w(z) and 6(z) have been replaced by the set of initial
conditions

w(0) =0, Dw(0)=1, 6(0)=0, DOO)=n (20)

here the extra condition on Dw(0) is utilizes the indeterminate
scale factor of the solution w(z). The value of 1 may be either
a real or complex constant. The software package Matlab
R2012b gives the builtin function ode45, which provides a
good advantage to implement the explicit Runge Kutta method.

TABLE I
CRITICAL THERMAL RAYLEIGH NUMBER AT M = 0.

= 0 10 20 30 40 50
R, | 39.478 42007 49.548 61.956 78.966  100.116
@ 3.139  3.1399  3.149 3.159 3.219 3.339
1 | R, | 39236 41.729 49.146  61.275 77.702  97.534
« 3.159  3.1599  3.169 3.209 3.309 3.599
5 | R: | 34594 36468 41.779 49.531 57957  65.044
a 3419 34599  3.609 3.969 4.599 5.400
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Fig. 1. Variation of R. with Q at R, = 10.

VI. RESULTS AND DISCUSSION

The onset of thermal convection in a fluid-saturated porous
medium in the presence of mass flow and an internal heat
generation is analyzed by applying the linear theory. The
instability analysis is studied by using the classical normal
mode technique. Here, the critical vertical thermal Rayleigh
number (R,) is defined as the minimum of all R, values as
wave number («) is varied. The vector of wave number is
defined as o = (k,[,0). To achieve the stationary convection,
we set 0 = 0 as shown by Nield [20]. We also set
(Ry, Ry) - (k,1) = 0. The term longitudinal disturbances are
characterized by k£ = 0. From the Table I, it is observed that
when Q = 0 and M = 0, the present results are very good
agreement with earlier published results in the literature by
Nield [21]. An increase the magnitude of () from 0 to 5, the
critical value of R, is reduced seen in Table I. Hence, the heat
flow parameter () causes destabilization in the medium.

A comparison of critical value of R, as a function of () for
different values of mass flow rate (A/) is shown in Fig. 1 at
R, =10 and R, = 0. It is interesting to noted that, at negative
value of M = —10, R, is increasing with the increasing the
values of () upto ) < 3, there after, it is decreasing smoothly.
It means for small magnitudes of ) the flow is stabilized and
higher magnitudes of () destabilizes the flow and convection
commences. But, as M increases -10 to 10, at higher value
of M, the critical R, value is lower than at lower magnitudes
of M. From Fig. 1, it is to summarize that for both positive
and negative magnitudes of M, R, is decreasing with the
increasing the values of (). It indicates that, increasing the
heat source has a destabilizing effect is as seen in Fig. 1.

The response of R, with varying R, is shown in Fig.
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Fig. 2. Variation of R, with R, at Q = 1.
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Fig. 3. Variation of R, with M at R, = 10.

2 for positive and negative magnitudes of M at R, = 0,
respectively. It is noted that, at M = 0, the critical value
of R, is higher than the remaining all magnitudes of M. An
increase in R, reduces the onset of convection, so that in this
range, the system is least stable when M = —10. It is also
interesting to notified that, as R, increases then the critical
value of R, is also increased up to certain value of R, there
after, R, value is decreased for all M values as seen in Fig. 2.
It means that, the flow rate is strongly destabilizing at higher
values of R, for irrespective of the value of M.

Fig. 3 shows that, the response of R, with mass flow
rate (M) in the presence of different heat source values of
@ =0,1,2 and R, = 10 at R, = 0. As M is increasing
then R, also increasing up to certain values of M there after
decreasing for all values of () as seen in Fig. 3. Thus, in
presence and absence of heat source, the thermal flow has
strongly stabilizing effect up to certain value of M, then after
strongly destabilize the thermal flow. It is notified that, for
positive values of M, the flow is destabilize earlier at higher
value of ) as compared to lower values of Q. It concluded

that, in the presence or absence of internal heat source, creates
a dual role (for negative M flow is stabilizing and for positive
M flow is destabilizing) on the thermal instability of the
system.

VII. CONCLUSION

We have analyzed the instability of thermal convection in
a Hadley-Prats flow subject to internal heat source and mass
flow by using linear stability analysis. The critical value of R,
is evaluated for different combinations of the flow governing
parameters. It has been concluded from the table and graphs
that the following results can be obtained:

° As heat source and mass flow increases causes the
strong destabilization.
° In the presence of heat generation, the flow is

destabilizing at higher horizontal Rayleigh numbers
irrespective of mass flow.

° It is clear that the qualitative changes appear in
critical Rayleigh number subject to heat source and
mass flow.

NOMENCLATURE

d height of porous layer

g acceleration due to gravity

K permeability

km thermal conductivity

M dimensionless mass flow

P dimensionless pressure

q dimensionless velocity

Q dimensionless heat source

R., R, horizontal thermal Rayleigh number
R, vertical thermal Rayleigh number

t dimensionless time

U, V, W

Greek symbols

@ dimensionless overall wave number
[o thermal diffusivity

(Ba.» Ba,) horizontal thermal gradient vector
Yo thermal expansion coefficients

0 dimensionless temperature

v kinematic viscosity

p density

P porosity

Subscripts

f fluid medium

m porous medium

s study state

Superscripts

/

dimensional variables

x,y, 2 component of dimensionless velocities
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