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     
Abstract—Method of combined teaching laws of classical 

mechanics and hydrostatics in non-inertial reference frames for 
undergraduate students is proposed. Pressure distribution in a liquid 
(or gas) moving with acceleration is considered. Combined effect of 
hydrostatic force and force of inertia on a body immersed in a liquid 
can lead to paradoxical results, in a motion of pendulum in particular. 
The body motion under Stokes force influence and forces in rotating 
reference frames are investigated as well. Problems and difficulties in 
student perceptions are analyzed.    

    
Keywords—Hydrodynamics, mechanics, non-inertial reference 

frames, teaching.  

I. INTERNAL PRESSURE IN ACCELERATED LIQUIDS 

HEN a liquid (or gas) is under the influence of external 
forces, the internal pressure in it is not a homogeneous 

one [1]. In order to demonstrate the fact, let us choose in the 
liquid an infinitesimal element of a cubic form whose volume 

is dxdydzdV   and assume that the force dVf


( f


is called a 

force density, i.e. force on a volume unit) acts on it (Fig. 1). 
 

 

Fig. 1 An infinitesimal element in the liquid 
   

As a result, the force dydzzyxp ),,( acts in the positive X 

direction on a cubic side with x coordinate ( ),,( zyxp  is a 

pressure function) and the force dydzzydxxp ),,(   acts in 

the same direction on the parallel side. If the liquid is in an 
equilibrium state (and then every volume inside is), the next 
equation must be fulfilled  

 

dxdydzfzyxpzydxxp x ),,(),,(        (1) 
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From this 
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x

p



                                             (2) 

 
Similar equation can be written in the two other Y, Z 

directions and then by means of a gradient   it can be 
received 
 

                 fp


                                              (3) 
 
When a body is immersed in a liquid, its surface points are 

under non-equal pressures and as a result the total force acts 
on it in the direction opposite to the gradient, i.e.  

 

 
VV

dVfpdVF


                        (4) 

 
Here the integration is produced on the body volume that 
immersed in the liquid.  

When the liquid is in the field of homogeneous gravity 
force, gf


 (  is a liquid density), it follows from (4) that 

the force 
 

                                   gVFA


                                      (5) 

 
acts on the body in the direction opposite to the gravity. That 
is the buoyant or Archimedes force. If z direction is chosen in 
the gravity direction, the change of the pressure with a depth 
(hydrostatic pressure) can be received from (3): 
 

                              gzpzp  0)(                                   (6) 

 

where 0p  is a pressure on the liquid surface (atmospheric 

pressure, for example). Now let us suppose that a container 
with a liquid (or gas) moves with a uniform acceleration a


. 

As a result, its reference frame is non-inertial one [2]. In such 

reference frame a fictitious force a
  acts on every unit of 

volume, so a total force that acts on it is  
 

                                 agf


                                       (7) 
 
Suppose the container moves in a horizontal direction 

normally to the gravity force and choose the direction of its 
motion as the X direction and the gravity as the Z direction. 
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Then one can receive for the internal two dimensional pressure 
in the liquid (or gas) similarly to (6) 

 

                         gzaxpzxp   0),(                        (8) 

 

where 0p  is a pressure in the origin )0,0(0 pp  . It is seen 

from (8) that the internal pressure decreases in the direction of 
the liquid motion. As a result, a body of volume V that 
immersed in the liquid is acted by the force in the direction of 
its motion. The formula for the force can be received from (4): 
 

                                   xVaF ˆ


                                         (9) 
 
So the total force that acts on the body is 
 

                                zVgxVaF ˆˆ  


                          (10) 
 
It is interesting that the liquid surface is inclined at the 

angle of 








 

g

a1tan  relatively to the horizontal direction 

towards the motion (Fig. 2). 
 

 

Fig. 2 A surface of an accelerated liquid 
 

It follows from the fact that in the equilibrium state the 
liquid surface has to be normal to the total force direction.  

II. PENDULUM MOTION IN ACCELERATED LIQUID 

Let us imagine a simple pendulum hanging from the upper 
surface of a box filled with a liquid or gas and moving with a 
horizontal acceleration xaa ˆ

 . So the box is a non-inertial 
reference frame. At the beginning, suppose that 0  ( 0  is 

a density of the pendulum body).  
Projecting the forces (Archimedes, inertia and tension T) 

into X and Z axes, we obtain the equations 
 








VgVgT

VaVaT

0

0

cos

sin


 ,                     (11) 

 
where   is the angle of the pendulum inclination. From (11) 
one can see that the angle is 
 

g

a
arctan                 (12) 

 
and does not depend on a relationship between the body and 
liquid densities, unexpectedly. However, the direction of the 
inclination does depend on the relationship. In our case of 

0   the pendulum inclines backwards, like that in empty 

box [3].  
Now let us imagine a simple pendulum attached to the 

bottom of a box filled with a liquid or gas (for example, a 
balloon filled with helium which string fixed to the bottom of 
a car) and moving with a horizontal acceleration xaa ˆ


. This 

time 
0   and the Archimedes force makes a string tension.  

The equations of the pendulum motion are the same (11) 
and so the angle of the pendulum inclination is (12) as well. 
But in this case of 

0   (balloon in a car) the pendulum 

inclines towards the box motion, paradoxically (Fig. 3). 
 

 

Fig. 3 Pendulum inclination in the case when the liquid density is 
greater than that of the pendulum body 

 
The inclination above is the pendulum equilibrium state. A 

small deviation of the pendulum from this state causes its 
harmonic oscillations. In the first case of 

0   one can 

obtain the equation of pendulum motion by projecting the 
forces on the direction normal to the pendulum string (Fig. 4): 

 

         VgLVgVa 000 sincos  ,      (13) 

 

where   is the deviation angle and L is a pendulum string 
length. A damping is neglected, obviously.  

 

 

Fig. 4 A diagram of the forces that acts on the pendulum in a liquid 
accelerated towards the right 

 
Taking (12) into consideration, one can see that the 

frequency of the pendulum free oscillations depends on the 
angle   and is equal to 
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




cos

1
0

0 L

g 









                        (14) 

 
In the opposite case of 

0  the equation of the pendulum 

motion looks like (13) after exchange positions of   and 0
on its left side. Like this, the frequency is given by (14) after 
the same exchange. 

III. BODY FALLING IN ACCELERATED LIQUID 

The next example is a body falling in an elevator cab filled 
with a liquid and going down (or up) with a uniform 
acceleration zaa ˆ


 (Z axis is chosen in a gravity direction). 

In this case in non-inertial reference frame of the elevator five 
forces act on the body and determine its acceleration with 
respect to the elevator walls. They are a gravity force Vg0 , 

internal force in the accelerated liquid Va  (both in the 

direction of elevator motion), inertia force Va0 , Archimedes 

force Vg  and Stokes force kv  in opposite direction (v is a 

body velocity with respect to the elevator, k is a Stokes 
constant). Thus, the equation of Newton Second Law has a 
form: 

 

   
dt

dv
VkvagV 00             (15) 

 
When an initial velocity is equal to zero, the solution is 
 

     





















V

kt

k

agV
tv

0

0 exp1


         (16) 

 
From (14) it is interesting to see that in a free fall of the 

elevator  ga   the body remains at rest without any 

dependence on relationship between the body and liquid 
densities. It is not so trivial. A relationship between 
gravitational and elevator cab accelerations determines the 
direction of a body motion relative to the cab. 

IV. BODY IN ROTATING LIQUID 

Now let us imagine a container with a liquid (bucket of 
water, for example) that rotates with uniform angular velocity 
  around a fixed vertical axis and has, inside it, a small body 
of volume V. In this case, the pressure distribution in the liquid 
is 

 

2
),(

22

0

r
gzprzp

  ,       (17) 

 
where r is a radial distance. From (17) one can see that the 
surface of equal pressure is a rotational paraboloid (Fig. 5). 
Then, similarly to (7), the total force that acts on every unit of 

the liquid volume in the non-inertial rotating reference frame 
is 
 

rgf


2                            (18) 
 

So, as it derives from (4) and (16), the total force that acts on a 
body immersed in a liquid in a radial direction is 

 

  rVFr


2

0                         (19) 

 
Here a centrifugal force [4] that acts on the body is taken 

into consideration as well.  
 

 

Fig. 5 A surface of a rotating liquid 
 

From (19) one can see that in a case of 
0   the radial 

force carries the body towards the axis of rotation. This force 
plays an important role in the known tea leaf paradox [5], 
where tea leaves in a cup of tea migrate to the center of the 
cup after being stirred rather than being forced to the edges of 
the cup.  

V. PENDULUM MOTION IN ROTATING LIQUID 

Combining Sections II and IV, one can consider the motion 
of the simple pendulum mentioned in Section II. For example, 
suppose a simple pendulum is suspended in a box filled with a 
liquid or gas and rotating with uniform angular velocity   
around a fixed vertical axis outside the box. A point of the 
pendulum suspension is on the distance R from the axis and

0  .  

In a case of the pendulum equilibrium it is easy to see that 
the equations for the angle of the pendulum inclination look 
like (11), just now Ra 2 . So, the angle of inclination is 

 

g

R2

arctan
                            (20) 

 
and again does not depend on a relationship between the body 
and liquid densities. In our case of 

0   the pendulum 

inclines away from the rotation axis (Fig. 6). The reason is that 
the centrifugal force is greater than the internal force in the 
liquid. 
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As before, a small deviation of the pendulum from this state 
causes its harmonic oscillations. The equation of the pendulum 
motion looks like (13) with Ra 2 and   from (20). The 
frequency of the pendulum free oscillations can be written in 
the form 

 

22

0
0 11 



















g

R

L

g 

                  (21) 

 
It is seen that the frequency increases with angular velocity 

increasing. From (21), in the private case of 0 , one can 
obtain formula for the simple pendulum oscillations in a liquid 
at rest.  

 

 

Fig. 6 Pendulum inclination in a rotating liquid in the case when the 
liquid density is less than that of the pendulum body  

  
Now suppose the pendulum is attached to the bottom of a 

box filled with a liquid or gas and rotating with uniform 
angular velocity   around a fixed vertical axis outside the 
box, as before. This time 

0   (it is the case of the balloon 

in a rotating box) and the pendulum inclines towards the 
rotation axis. The reason is that now the centrifugal force is 
weaker than the internal force in the liquid. 

As to the equation of the pendulum motion and the 
oscillation frequency, they look like (13) and (20), 

accordingly, with exchanging positions of   and 0 , as 

mentioned after (14). 

VI. CONCLUDING REMARKS 

The above can be included into undergraduate classical 
mechanics course, for instance, the first part as a lecture and 
the next as exercises. Theoretical material can be accompanied 
by demonstrations, such as [6]. 

Essentially the nature of the internal force that arises in 
accelerated liquids is a mechanical one. There are quite a few 
students that even do not suspect the force exists and the 
others think that the force is a fictitious one though it is a real 
force. As a result, their exercise solutions are wrong. It is 
thought that such addition to the course can help 
undergraduate students to comprehend the non-inertial 
reference frames deeply.   
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