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Abstract—Propagation of arbitrary amplitude nonlinear Alfven 
waves has been investigated in low but finite β electron-positron-ion 
plasma including full ion dynamics. Using Sagdeev pseudopotential 
method an energy integral equation has been derived. The Sagdeev 
potential has been calculated for different plasma parameters and it 
has been shown that inclusion of ion parallel motion along the 
magnetic field changes the nature of slow shear Alfven wave solitons 
from dip type to hump type. The effects of positron concentration, 
plasma-β and obliqueness of the wave propagation on the solitary 
wave structure have also been examined.

Keywords—Alfven waves, Sagdeev potential, Solitary waves.

I. INTRODUCTION

HE study of nonlinear Alfven waves in electron-positron-
ion plasmas has become of interest in plasma research 

because Alfven wave activity can be observed in a wide
variety of astrophysical plasmas containing electrons, 
positrons and ions. Large amplitude Alfven wave research 
attracted renewed attention [1], [2] because of the observation 
of the Alfven wave activity in the auroral regions by the Freja 
satellite [3], [4]. The nonlinear solitary structure of kinetic 
Alfven wave was first analytically studied by [5] in electron-
ion plasma. They showed that density humps can be 
associated with nonlinear Alfven wave dynamics. Thereafter a 
number of authors have reconsidered the problem by including 
various factors influencing the solitary wave structure [6]-
[10]. Nonlinear dynamics of slow shear Alfven wave was also 

studied by [11] in low-  plasma. It was found that density 

dips can be associated with this wave in the nonlinear regions.
The importance of slow shear Alfven wave was emphasized 
long ago by Lysak and Carlson [12] in connection with the 
magnetospheric-ionospheric coupling. All these works are 
restricted to simple electron-ion plasmas. Most of the 
astrophysical plasmas contain electrons, ions as well as 
positrons. The properties of wave motion in e-p-i plasmas are 
expected to be different from those in two components
electron-ion or electron-positron plasmas [13], [14]. For 
example, kinetic Alfven wave in electron-positron-ion plasma 
can form density dips while in electron-ion plasma they form 
density humps [5]. Recently nonlinear Alfven waves in 
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electron-positron-ion plasmas have been studied by a few 
authors [15], [16].

Saleem and Mahmood [17] have studied nonlinear kinetic 
Alfven wave in electron-positron-ion plasma ignoring ion 
parallel motion. On the other hand, [18] considered solitary 
kinetic Alfven waves in electron-positron-ion plasma 
including parallel ion motion and current. Mahmood and 
Saleem [19] investigated nonlinear solitary structures of 
arbitrary amplitude slow shear Alfven wave in electron-
positron-ion plasma ignoring ion parallel motion. They have 
shown that electron density dips of SSAW are formed in super 
Alfvenic region. As ion inertia plays an important role in 
Alfven wave dynamics due to ion polarization drift, it would 
be interesting to study nonlinear slow shear Alfven wave in 
electron-positron-ion plasma including full ion dynamics.

In this paper we present a detailed study of nonlinear slow 

shear Alfven wave in electron-positron-ion plasma with  << 

(me/mi) <<1 in which ion inertia and current along the 
magnetic field are taken into consideration. We show that 
unlike the previous work [19] which ignored ion parallel 
motion and predicted dip type density soliton, here hump type 
solitons for slow shear Alfven wave may be excited.

The paper is organized as follows: Basic equations are 
presented in Section II. In Section III, we derive the energy 
integral equation and Sagdeev Potential. In Section IV, we 
present the numerical analysis graphically and discuss the 
results.

II. BASIC EQUATION

We consider cold homogeneous electron-positron-ion
plasma in presence of a stationary ambient magnetic field 

along z-axis i.e., 0 0 zB B e


 . The equations governing the 

dynamics of the nonlinear slow shear Alfven waves in x-z 

plane in a low- 2
0 0( 8 / )n T B  electron-positron-ion plasma 

in the low frequency limit are: 
For electrons:

( )
0e e ezn n v

t z
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v v
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where  denotes the electromagnetic potential associated 

with the parallel electric field Ez; Q=me/mi is the electron to 
ion mass ratio and Vez is the parallel component of electron 
velocity with respect to the external magnetic field. In writing 
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these equations we have assumed that electron inertia 
dominates over electron pressure.

For positrons: 
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Here, Q=mp/mi is the positron to ion mass ratio and vpz is the 
parallel component positron velocity.

For ions:
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Here vix and viz are respectively the perpendicular and parallel 
component of the velocity of ions with respect to the external 

magnetic field;  is the electrostatic potential associated with 

the perpendicular component Ex of the electric field. The 
above equations have been written in dimensionless form by 
normalizing number density (na) by unperturbed number 
density (na0) (a=e, p, i), time (t) by 1/i, velocity by Alfven 

speed (vA) and potentials () by (kBTe/e). Here i and kB are 
the ion gyro-frequency and Boltzmann constant respectively.   

This ion velocity is taken to be solely due to polarization 
drift which is necessary for an electron-positron-ion plasma to 
maintain the quasineutrality condition. It may be noted here 
that the electron and positron polarization drifts can be ignored 
for such plasmas. The expression for the parallel current 
density is 

z i iz p pz e ezj n v n v n v   (8)

Ampere’s law for jz gives 

2 ( ) zj

z t

 


 
 

 
(9)

The quasineutrality condition is prescribed by

np + ni = ne       (10)

III. DERIVATION OF SAGDEEV POTENTIAL EQUATION

We seek stationary localized planar solution of the 
nonlinear equations given by (1)-(10). So we transform these 
equations in a moving frame  defined by

k x k z Ut   
(11)

Here U is the velocity of the nonlinear structure in the moving 

frame; k and k denote the direction cosines in the 

perpendicular direction i.e., x direction and the parallel 
direction i.e., the z-direction respectively such that

2 2 1k k  
.                         (12)

Now the equation for electron continuity (1) and the 
equation for positron continuity (3) with the use of the 
transformation given by (11) and appropriate boundary 
conditions i.e.,

as ;  , 1e pn n  ; , 0,ez pzv v  yield

1
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Here ne and np are the electron density and positron density 
normalized to ne0 and np0 respectively. Using (12) and (13) in 
the equations for electron and positron momentum balance 
equations (2) and (4) we obtain
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From the equation for ion continuity (5) we get

1
(1 )ix iz

i

k v k v U
n

   

(16)

where ni = ni/ni0; ni0 being the unperturbed ion density. In 
deriving (16), the transformation given by (11) and boundary 
conditions

1in  , , 0ix izv v  as   

has been used.
Combining (14) and (15) one obtains 
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1

1
2

p

e

n

n





            (17)

Using the transformation (11) and the relation (16) we 
obtain the following equation from the equation for ion 
momentum (6):
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Now the quasi-neutrality condition (10) expressed in terms 
of the normalized number densities of the species takes the 
form 
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where p=np0/ne0 is the ratio of the unperturbed positron and 
electron densities. Using (17) and (19) we obtain from (18) 
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On combining (14) and (20) one gets
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Now from (16) we obtain the transverse component velocity 
as:
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Again (7) under the transformation (11) turns out to be 
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Comparing (23) and (22) one readily obtains 
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Differentiating (14) twice with respect to  we readily 
obtain
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Equation (9) in the moving frame can be written as
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Finally using (8), (13), (21), (24) and (25) we obtain from 
(26), the desired “energy law” in the following form 
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where V (ne) is the effective Sagdeev potential given by
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Equation (28) contains several constants A, B, C and D
which depend on different plasma parameters such as positron 
concentration, plasma β and obliqueness of wave propagation. 
These constants are given by
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IV. RESULTS AND DISCUSSION

Equation (27) may be identified as the energy equation of 
an oscillating quasi-particle of unit mass, velocity edn

d

and 

position ne in potential V (ne). For solitary wave solutions, 
particle motion represented by (27) must be confined between 
two points ne=1 and ne = nem. The conditions for the existence 
of solitary wave solutions are [20, 21]:
(i) V(ne)=0 at ne=1 and ne= nem

(ii)

1

0

e
e n

dV

dn


 and 
2

2

1e
e n

d V

dn
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 0

(iii) V (ne) < 0 for 1< ne < nem (hump soliton)
For nem < ne < 1 dip soliton is formed. The particle is 

reflected back at ne= nem so that V (ne) > 0 for ne > nem (or ne< 
nem) if nem > 1 (or nem< 1).

As the nature of the Sagdeev potential V (ne) determines the 
conditions for existence and nature of the solitary wave, it is 
important to study the nature of variation of V (ne) for different 
plasma parameters such as positron concentration, plasma β
and obliqueness of wave propagation. For numerical analysis 
we have chosen parameter ranges keeping in mind 
experimental as well as space and astrophysical situations. 

To show the region of existence of solitary wave solution V 
(ne) is drawn against ne for different values of positron 
concentration (Fig. 1). It indicates hump type soliton solution 
whose amplitude decreases with increase in positron 
concentration. For p < 0.070747, the soliton solution does not 
exist.

In Fig. 2 we show the plot of V (ne) versus ne for different 

values of  it again shows excitation of hump type soliton. 

Amplitude of this soliton increases with increase in  . 

However there is an upper limit of  (=0.150043) beyond 

which hump solitons cannot exist.

Fig. 1 Sagdeev profile for different values of positron concentration.
The curves labeled a, b, c and d correspond respectively to p= 

0.070647, 0.070747, 0.070847 and 0.070947

Fig. 2 Sagdeev profile for different values of plasma  . The curves 

labeled a, b, c and d correspond respectively to β= 0.149963, 
0.150003, 0.150043 and 0.15083

Fig. 3 Sagdeev profile for various values of the obliquity factor k .

The curves labeled a, b, c and d correspond respectively to k = 

0.3594635, 0.3595335, 0.3596135 and 0.3596935
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Fig. 3 shows the plot of V (ne) for various values of the 

obliquity factor k . Obviously the amplitude of these solitons 

depends sensibly on the propagation angle with respect to the 
external magnetic field. However, there is a lower limit to the 

value of k (i.e., upper limit to the angle of propagation) 

beyond which hump solitons cannot exist. 
To summarize we have investigated in detail nonlinear slow 

shear Alfven wave in electron-positron-ion plasma including 
ion motion parallel to the external magnetic field. We have
examined the effects of positron concentration, strength of 
magnetic field and propagation angle with respect to the 
external magnetic field on the conditions of existence and 
nature of the slow shear Alfven waves in electron-positron-ion 
plasmas. We have also examined the parametric regions of 
existence of nonlinear slow shear Alfven solitary waves. There 
exists a lower limit of positron concentration (p = 0.070747) 
below which soliton solution does not exist. There exists an 

upper limit to the value of  (=0.150043) beyond which 

hump solitons cannot exist. It has also been shown that the 
amplitude of slow shear Alfven wave soliton depends sensibly 
on the propagation angle with respect to the external magnetic 

field and there is a lower limit to the value of k (i.e., upper 

limit to the angle of propagation) beyond which hump solitons 
cannot exist. Earlier authors [16] studied the same problem 
ignoring ion parallel motion and predicted dip type soliton. 
Here we find that inclusion of ion parallel motion plays an 
important role and changes the nature of soliton from dip type 
to hump type. So, one must include full ion dynamics in order 
to study nonlinear slow shear Alfven wave.

Finally, we would like to point out that the present 
investigation may be useful in many astrophysical and space
environments where slow shear Alfven wave may be excited
in electron-positron-ion plasmas .Our investigation has been 
restricted to cold, homogeneous and collisionless plasma. The
analysis can be generalized to include the effects of 
temperature, inhomogeneity and collision which are beyond 
the scope of the present work. 
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