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 
Abstract—Singular value decomposition based optimisation of 

geometric design parameters of a 5-speed gearbox is studied. During 
the optimisation, a four-degree-of freedom torsional vibration model 
of the pinion gear-wheel gear system is obtained and the minimum 
singular value of the transfer matrix is considered as the objective 
functions. The computational cost of the associated singular value 
problems is quite low for the objective function, because it is only 
necessary to compute the largest and smallest singular values (µmax 
and µmin) that can be achieved by using selective eigenvalue solvers; 
the other singular values are not needed. The design parameters are 
optimised under several constraints that include bending stress, 
contact stress and constant distance between gear centres. Thus, by 
optimising the geometric parameters of the gearbox such as, the 
module, number of teeth and face width it is possible to obtain a 
light-weight-gearbox structure. It is concluded that the all optimised 
geometric design parameters also satisfy all constraints. 
 

Keywords—Singular value, optimisation, gearbox, torsional 
vibration. 

I.INTRODUCTION 

EARS are widely used to transmit mechanical power 
from one shaft to another. The purpose of the gears is to 

couple two shafts together such that the rotation of the driven-
shaft is a function of the rotation of the driving-shaft.  

A four-degree-of-freedom model of the pinion gear-wheel 
gear system is considered for simplicity. The pinion gear body 
and wheel gear body are assumed to be rigid. The teeth are 
assumed to be elastic and parallel spring-damper combinations 
are assumed to exist between the teeth and the gear body. 

Differential equations are obtained from equation of motion 
of gears system.  

A dynamic gear vibration model is a useful tool to study the 
vibration response of a geared system with various gear 
parameters and operating conditions [1]. 

Torsional vibration models of gears system are classified 
according to their rigidity and elasticity such as purely 
torsional multi-body models, rigid multi-body models, flexible 
multi- body models and semi-rigid-elastic multi-body models 
[1]. 

Torsional vibration models of gears system are also 
classified according to time-invariant and time-variant such as 
linear time invariant (LTI) models with stiffness, linear time-
varying (LTV) models with stiffness, time-varying models 
with backlash, as well as time-invariant average stiffness and 
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time-invariant models in both backlash and stiffness 
simultaneously [2]. 

II.TORSIONAL VIBRATION MODEL 

A. Equation of Motion of Gears System 

A four-degree-of-freedom model of the pinion gear–wheel 
gear system is considered for simplicity. The pinion gear body 
and the wheel gear body are assumed to be rigid. The teeth are 
assumed to be elastic and parallel spring–damper 
combinations are assumed to exist between the teeth and the 
gear body. A four-degree-of-freedom model is shown in Fig. 
1. The equations of motion of the pinion gear–wheel gear 
system are written in terms of the four-degree-of-freedom 
model as follows [1]-[3]. 

Sp denotes rotational position of tooth i of a pinion gear, Øp 
denotes rotational position of the pinion gear, Sw denotes 
rotational position of tooth i of the wheel gear and Øw denotes 
rotational position of the wheel gear body.

 
Equation (1) is written for tooth i of a pinion gear as: 
 

    pppdpeppdpeppth TSrKSrDSJ   22     (1) 

 
where Jpth is the moment of inertia of tooth i of the pinion gear 
[kg.mm2], rdp is the pitch circle radius of the pinion gear [mm], 
Øp is the rotational position of the pinion gear body [rad], Sp is 
the rotational position of tooth i of the pinion gear [rad], 

p  is 

the rotational velocity of the pinion gear body [rad/s],
pS is the 

rotational velocity of the tooth i of the pinion gear [rad/s], 
pS

is the rotational acceleration of the tooth i of the pinion gear 
[rad/s2], and Tp is the contact torque applied to tooth i [N.mm]. 

Equation (2) is written for a pinion gear body as: 
 

0bpbJ 
                                  

(2) 

 
where Jpb is the moment of inertia of the pinion gear body 

[kg.mm2], b  is the rotational acceleration of the pinion gear 

body [rad/s2]. 
Equation (3) is written for tooth i of the wheel gear as: 
 

    wwwdwewwdwewwth TSrKSrDSJ   22         (3) 

 
where Jwth is the moment of inertia of tooth i of the wheel gear 
[kg.mm2], rdw is the pitch circle radius of the wheel gear [mm], 
Øw is the rotational position of the wheel gear body [rad], Sw 
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is the rotational position of tooth i of the wheel gear [rad], 
w  

is the rotational velocity of the wheel gear body [rad/s], 
wS  is 

the rotational velocity of the tooth i of the wheel gear [rad/s], 

wS  is the rotational acceleration of tooth i of the wheel gear 

[rad/s2], and Tw is the contact torque applied to tooth i [N.mm]. 
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Fig. 1 A four-degree-of-freedom model 
 

Equation (4) is written for the wheel gear body as: 
 

0wwbJ                                        (4) 

 
where Jwb is the moment of inertia of the wheel gear body 
[kg.mm2], 

w  is the rotational acceleration of the wheel gear 

body[rad/s2]. 
Ke is the stiffness coefficient [N/mm] and is assumed to be 

time-invariant. The stiffness coefficients Ke resulting from the 
tooth surface contact are written as [3]: 

 

                                  2
0

14 




ES

Ke                          (5) 

 
where E is Young's modulus [N/mm2], υ is the Poisson's ratio 
[–] and S0  is the thickness of gear [mm] which is written as 
[3]: 

 

                                
20 nmS                  (6) 

  
De is the viscous damping coefficient [N.s/mm] and is 
assumed to be time-invariant. Assuming viscous damping, 
Rayleigh damping is written as [3]: 
 

                                     ee KD                  (7) 

 
where ξ is the damping ratio [–]. 

The gear system equation of motion is written in matrix 
form as [3]: 

 

                       TKΩΩDΩJ            (8) 

 

where J is the moment of inertia matrix, D is the viscous 
damping matrix, K is the stiffness matrix, T is the vector of 

applied torques,   is the rotational acceleration vector,   is 
the rotational velocity vector, and   is the rotational position 
vector. 

The moment of inertia matrix J  is written as: 
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The viscous damping matrix D  is written as: 
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The stiffness matrix K  is written as: 
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The vector of applied torque vector T  is written as: 
 

                                 

14
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The rotational acceleration vector Ω  is written as: 
 

                              

14xw

w

p

p

S

S



































Ω                    (13) 

 

The rotational velocity vector Ω  is written as: 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:9, No:7, 2015

1318
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The rotational position vector Ω  is written as: 
 

                                  

14xw
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B. Singular Value Decomposition (SVD) 

Some basic properties of SVD are revisited below. Let 
mxnFA where F  is the field (the field may be real   or 

complex C) [3], [4]. There exist unitary matrices:  
 

  mxm
m Fuuu  ,...,, 21U        (16) 

 
and   

                        mxm
n Fvvv  ,...,, 21V                   (17) 

 
such that 

                                *VUA                        (18)  

   
where 

,
00

01 








     pDiag  ,..., 211         (19) 

 

     ,0...321  p   nmp ,min     (20) 

 
In the above equations, μi is the ith singular value of A, and the 
vectors ui  and vi are, respectively, the ith left and right singular 
vectors defined by the following eigenvalue problems: 
 

                     iii uAv    or   iii vuA *         (21) 

  
where a superposed asterisk denotes conjugated transpose. 
The following notations for singular values are adopted. 
 

 )()( 1max AA  the largest singular value of A     (22) 

 

     )()(min AA p the smallest singular value of A  (23) 

C. Structural Singular Value 

Assuming zero initial conditions, one gets the following 
harmonic response of a structure by taking the Laplace 
transform of the transfer matrix (8) as [3]: 

         )()()()(2 ssssss TKDJ       (24)  
 

                TKDJ 12 )()(  sss         (25) 
 

The complex Laplace transform variable s is substituted by 
js  , where  is the excitation frequency, and j is the 

imaginary unit. Then, (26) is written in the frequency domain 
as [3]: 
 

                  TKDJΩ 12 )(   j           (26) 
 

Note that singular values of the transfer matrix 
12 )(  KDJ  j  in (26) are called structural singular 

values in this article, and are function of  . 

III. CALCULATING THE LOAD CARRYING CAPACITY OF 

HELICAL GEARS 

A. Tooth Bending Stress 

The real tooth-root stress, is calculated as [5]-[7]: 
 

 FFVASF
n

t
F KKKKYYYY

bm

F
           (27) 

 
where Ft is the nominal tangential load [N], b is the face width 
[mm], mn is the normal module [mm],YF is the form factor [–
],Ys is the stress correction factor [–], Yε is the contact ratio 
factor [–], KA is the application factor [–], KV is the internal 
dynamic factor [–], KFβ is the face load factor for tooth-root 
stress [–] and KFα is the transverse load factor for tooth-root 
stress [–].

 
The safety factor for bending stress SF is calculated as [5]-

[7]: 
 

F

Fp
FS




                                     (28) 

 
where σFp is permissible bending stress. 

B. Tooth Contact Stress 

The real contact stress, σH  is calculated as [5]-[7]: 
 

   HHVAEH
n

t
H KKKKZZZZ

u

u

bm

F 1
 (29) 

 
where u is the gear ratio [-], ZH is the zone factor [-], ZE is the 

elasticity factor [ ], Zε is the contact ratio factor [-], 
Zβ is the helix angle factor [-], KHβ is the face load factor for 
contact stress[-] and KHα is the transverse load factor for 
contact stress [-]. 

 The safety factor for contact stress, SH is calculated as [5]-
[7]: 

F

2/ mmN
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H

Hp
HS




                               (30) 

 
where σHp is the permissible contact stress. 

IV. OPTIMISATION OF GEARBOX DESIGN PARAMETERS 

Constrained optimization is very useful tool for light-
weight-structure design of machine elements with constraints 
such as stress, deformation and vibration. 

In optimization, the goal is usually minimize the cost of a 
structure while satisfying the design specification. By 
optimizing the responsible parameters, it is possible to obtain 
a light-weight-gearbox structure. 

The flowchart of the design parameter optimisation 
procedure is shown in Fig. 2. 

V. NUMERICAL EXAMPLE 

Constrained optimisation approaches are applied to the 5-
speed gearbox. All programs are developed using MATLAB 
and in all optimisation studies, the sequential quadratic 
programming (SQP) method is employed. Torsional vibration 
parameters are shown in Table I. 

To find the optimum design parameter, the initial design 
parameters of the 5-speed gearbox including m, z, β and b are 
varied. Twenty-four design parameters are optimized 
simultaneously using the programs developed. During 
optimisation, different initial value vectors are used to identify 
the global minimum solution of the objective function, 
T(m,z,β,b). 

 
TABLE I 

TORSIONAL VIBRATION PARAMETERS 

 1st 
pinion 

2nd 
pinion 

3rd 
pinion 

4th 
pinion 

C. 
pinion 

R.  
pinion 

Torque TL 392.103 392.103 316.103 252.103 200.103 1148.103

Gear ratio u 1.814 1.147 1.242 1.560 1 2.84 

Young’s 
modulus E 

 
21.104 

 
21.104 

 
21.104 

 
21.104 

 
21.104 

 
21.104 

Poisson’s 
ratio υ 

 
0.3 

 
0.3 

 
0.3 

 
0.3 

 
0.3 

 
0.3 

Damping 
ratio ξ 

 
0.1 

 
0.1 

 
0.1 

 
0.1 

 
0.1 

 
0.1 

A. Objective Function  

The following objective function was employed: 
 

)(TF Min                       (31)   

   
The minimum singular values of the transfer matrix µMin(T) 

are defined as: 
 

       12 )()(  KDjJT MinMin              (32) 

 
The following optimization problem is solved: 
 

                       ),,,(min bzmT                     (33) 
 

           Subject to: UBbzmLB  ,,,                (34) 
 

                                 0)( XG                                  (35) 

C. Constraint Function 

Tooth bending stress, contact stress and the distance 
between gear centres are considered to be the constraint 
function in the optimization. 

The following constraints are considered to be constraint 
functions: 

 

                            0 FpF             (36) 

 

                             0 HpH                       (37) 

 

        Raaaaaa 54321 constant       (38) 

C. Optimisation Results 

The optimisation results using objective function T are 
presented in Tables II and III. Because of the limited space, 
only the important results are presented. 

Although the results given above represent the optimum 
solution, the standard design parameter values should be used 
by gear manufacturers. 

 
TABLE II  

OPTIMISATION RESULTS (SOLUTION NO:1) 

 1st 
pinion 

2nd 
pinion 

3rd 
pinion 

4th 
pinion 

C. 
pinion 

R. 
pinion 

Module 
m 

 
2.992 

 
3.917 

 
3.750 

 
3.283 

 
4.206 

 
4.329 

Number 
of teeth z 

 
19 

 
19 

 
19 

 
19 

 
19 

 
14 

Helix 
angle β 

 
26.108 

 
26 

 
26 

 
26 

 
26 

 
26.414 

Face 
width b 

 
28 

 
28 

 
28 

 
28 

 
28 

 
32 

Safety 
factor  
SF

 
1.062 

 
1.568 

 
1.784 

 
1.715 

 
3.544 

 
1.000 

Safety 
factor SH

 
1.3602 

 
1.510 

 
1.641 

 
1.687 

 
2.196 

 
1.245 

Centre 
distance a 

 
79,999 

 
79,903 

 
79,891 

 
79,85 

 
79,922 

 
80 

 
TABLE III 

OPTIMISATION RESULTS (SOLUTION NO:2) 

 1st 
pinion 

2nd 
pinion 

3rd 
pinion 

4th 
pinion 

C. 
pinion 

R. 
pinion 

Module 
m 

 
4.060 

 
3.920 

 
3.754 

 
3.287 

 
4.209 

 
4.330 

Number 
of teeth z 

 
14 

 
19 

 
19 

 
19 

 
19 

 
14 

Helix 
angle β 

 
32 

 
32 

 
32 

 
32 

 
32 

 
30.165 

Face 
width b 

 
30 

 
30 

 
30 

 
30 

 
30 

 
32 

Safety 
factor  
SF

 
1.037 

 
1.312 

 
1.500 

 
1.435 

 
2.964 

 
1.000 

Safety 
factor SH

 
1.154 

 
1.380 

 
1.496 

 
1.540 

 
2.002 

 
1.187 

Centre 
distance a 

 
79,960 

 
79,956 

 
79,950 

 
79,931 

 
79,964 

 
80 
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Fig. 2 Flow chart to optimize gearbox design parameters 
 

Minimum singular values of transfer function are objective 
function in this study. Cost of objective functions are 
presented in Fig. 3. 
 

 

Fig. 3 Cost of Objective Function 

VI. CONCLUSION 

Singular value decomposition based optimisation of 
geometric design parameters of a 5-speed gearbox via 
torsional vibration model is studied. The following 
conclusions are drawn.  

The computational cost of the associated singular value 
problems is quite low for the objective function, because it is 
only necessary to compute the largest and smallest singular 
values (µmax and µmin) that can be achieved by using selective 
eigenvalue solvers; the other singular values are not needed. 

Although the results given above represent the optimum 
solution, the standard design parameter values should be used 
by gear manufacturers. 

By optimising the geometric parameters of the gearbox such 
as, the module, number of teeth and face width it is possible to 

obtain a light-weight-gearbox structure and minimize the 
torsional vibration. It is concluded that the all optimised 
geometric design parameters also satisfy all constraints that 
include bending stress, contact stress and constant distance. 
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