
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

1023


Abstract—Workflow scheduling is an important part of cloud

computing and based on different criteria it decides cost, execution
time, and performances. A cloud workflow system is a platform
service facilitating automation of distributed applications based on
new cloud infrastructure. An aspect which differentiates cloud
workflow system from others is market-oriented business model, an
innovation which challenges conventional workflow scheduling
strategies. Time and Cost optimization algorithm for scheduling
Hybrid Clouds (TCHC) algorithm decides which resource should be
chartered from public providers is combined with a new De-De
algorithm considering that every instance of single and multiple
workflows work without deadlocks. To offset this, two new concepts
- De-De Dodging Algorithm and Priority Based Decisive Algorithm -
combine with conventional deadlock avoidance issues by proposing
one algorithm that maximizes active (not just allocated) resource use
and reduces Makespan.

Keywords—Workflow Scheduling, cloud workflow, TCHC
algorithm, De-De Dodging Algorithm, Priority Based Decisive
Algorithm (PBD), Makespan.

I. INTRODUCTION

HE user accesses computing resources, in a cloud, as
general utilities that are leased and re-leased [1]. The

benefits to cloud users are avoidance of up-front investment,
lower operating cost, reduced maintenance cost, and
scalability on demand. These features ensure elasticity to a
user’s computing environment, adapting the computer system
to user needs.

Virtualization [2] presents a logical grouping/subset of
computing resources accessed in abstract ways with benefits
over original configuration. Virtualization software abstracts
hardware by creating an interface to Virtual Machines (VMs),
representing virtualized resources like CPUs, network
connections, physical memory, and peripherals. A VM is an
isolated execution environment independent of others. A VM
has its own operating system, applications, and network
services. Virtualization allows server consolidation, hardware
normalization, and application isolation in same machine.

Workflow systems are a vehicle for efficient scientific
applications development. Such systems benefit from resource
provisioning technology from cloud computing. Workflows
are usually organized as Directed Acyclic Graph (DAG),

B. Arun Kumar is Research Scholar, Karpagam University, Tamilnadu,

India (e-mail: arunkumar.b.karpagam@gmail.com).
T. Ravichandran is Principal, Hindusthan Institute of Technology,

Tamilnadu India.

where constituent jobs (nodes) are either controlled or are data
dependent (edges). Control-flow dependency specifies that a
job should be completed before others start their process. In
contrast, dataflow dependency specifies a job cannot start till
all input data (created by earlier completed jobs) is available
[3]. Control-flow is a common abstraction to reason about
relationship between different jobs but shows how dataflow
information is valuable to effectively use storage. A
workflow-based workload has many workflow instances. A
workflow instance is data-independent as they compute with
differing inputs/parameters [4]. Also, workflows are designed,
assembled, validated, and analyzed collaboratively.
Workflows are shared similar to data collections, and compute
resources are shared today by communities. The analysis of
workflows necessitates substantial computational and data
resources, which generate required results [5]. So, to offset
this, Cloud computing is designed to ensure on-demand
resources to users, to provide locally available computational
power, delivering new computing resources when needed.

The remainder of this paper is organized as follows. Section
II reviews several related works. Section III presents the De-
De-Dodging Algorithm and PBD based workflow scheduling.
Section IV shows experimental evaluation of heuristic and
discusses the result. Section V concludes the paper.

II. LITERATURE SURVEY

Important workflow scheduling strategies which bring out a
survey of such strategies in cloud computing including their
detailed classification was focused on by [6]. Then a
comparative analysis of studied approaches was made.

Priority based Genetic Algorithm BCHGA to schedule
workflow applications to cloud resources optimizing total
workflow cost within a user`s specified budget was presented
by [7]. A workflow`s task is assigned priority using bottom
level (b-level) and top level (t-level). To increase population
diversity, priorities create initial BCHGA population. The new
algorithm is simulated in Java and evaluated with synthetic
workflows based on realistic workflows from various areas
considering cloud service provider’s pricing model like that of
Amazon. Simulation shows that the new algorithm promises
performance compared to Standard Genetic Algorithm (SGA).

New task schedulers for clouds, achieving energy savings
was presented by [8]. Task dependency leads to low cloud
utilization. The above mentioned task is presented to address
this. Results comparing the new schedulers with current ones
show it is possible to get energy savings up to 22.7%, with no

Scheduling Multiple Workflow Using De-De Dodging
Algorithm and PBD Algorithm in Cloud: Detailed

Study
B. Arun Kumar, T. Ravichandran

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

1024

makespan penalty. It is also seen that scheduling efficiency
depends on how tasks are interconnected in workflows.

A workflow scheduling framework that efficiently
schedules series workflows with many objectives in a cloud
system was proposed by [9]. A meta-heuristic method called
Artificial Bee Colony (ABC) creates an optimized scheduling
plan. The framework allows setting multiple objectives.
Conflicts among objectives are resolved using Pareto
technique. Experiments investigate performance comparing
algorithms used often in cloud scheduling. Results show that
the new method reduces 57% cost and 50% scheduling time in
a similar Makespan of HEFT/LOSS for a scientific workflow
like Chimera-2.

Cloud computing introduction, workflow basics, and
scheduling were described by [10] where scheduling
algorithms used in workflow management considered the
algorithms, types and tools used.

An Adaptive Hybrid Heuristic for user constrained data-
analytics workflow scheduling in hybrid Cloud environment
integrating the dynamic nature of heuristic based approaches
and workflow-level optimization ability of meta-heuristic
based approaches was proposed by [11]. The new approach’s
effectiveness is illustrated through a comprehensive case study
compared to other techniques.

A strategy to schedule service workflows in a hybrid cloud
proposed by [12] determines which services use paid
resources and what resources should be requested to the cloud
to minimize cost and meet deadlines. Experiments suggest that
strategy decreases execution costs and ensures reasonable
execution times.

Implementation of workflow scheduling to reduce overall
jobs execution time in a workflow was focused on by [13].
The new scheme was evaluated using simulation based
analysis on WorkflowSim.

A delay-constrained optimization problem to increase
resource use and a two-step workflow scheduling algorithm to
reduce cloud overhead in a user-specified execution time
bound was formulated by [14]. Simulation shows that the new
approach consistently achieved lower computing overhead and
higher resource use than current methods in execution time
bound. It reduced total execution time greatly by strategically
choosing appropriate mapping nodes for prioritized modules.

A Multiple QoS constrained scheduling strategy of Multi-
Workflows (MQMW) was introduced by [15]. The strategy
schedules multiple workflows started at any time and QoS
requirements are considered. Experiments show the strategy
increasing scheduling success rate significantly.

III. METHODOLOGY

Users currently don’t want to be stuck to own cloud
providers to execute and schedule multiple workflows. Many
organizations have their private cloud, but when extra
resources are needed they opt for public cloud where they
outline their use. In dependent workflow scheduling,
switching between private and public cloud resources
increases execution time and cost. Multiple requests for
resources result in increased bandwidth. In this section two

different Scheduling algorithms, De-De Dodging and Priority
Based Decisive (PBD) algorithm, are proposed.

A. Time and Cost optimization for Hybrid Clouds (TCHC)
Algorithm

TCHC algorithm decides task scheduling to public cloud,
by determining dependencies among workflows. The
algorithm decides best split between private and public cloud
determining a task with least cost and execution time to be
scheduled in public clouds. Cost is reduced by choosing
minimum bandwidth in a public cloud.

The algorithm’s 2 steps are task selection to reschedule and
resources selection from a public cloud to create a hybrid
cloud. The former decides which tasks can have reduced
execution time using powerful resources from a public cloud;
the latter determines execution time and costs involved in a
new schedule. When the task is selected, initial scheduling
involves available resources verification in a private cloud.
When resources are available for a task, scheduler schedules
tasks inside a private cloud. The algorithm checks whether a
private resource pool (J) is less than deadline (Z) the loop
continues till all tasks (T) are completed. Inside a loop, a node
is selected from task set with highest priority and its
Predetermined Start Time (PST) and Predetermined Finish
time (PFT) are calculated with dependency ratio. Next,
priority is set to next highest PST. Finally, all nodes are added,
and resources allocated to each set of task. But, if resources
are not enough, rescheduling requests the public resource
pool. The algorithm now checks whether PFT is greater than
Application Time Remaining (ATR). If the answer is yes then
it calculates execution time and cost for extra resources, based
on Path Clustering Heuristic (PCH) algorithm, or else it goes
to private resource pool itself. Next if Pending Task (PT) is
more than available Public Resource Pool, then tasks are
queued for execution. Each task is selected and cost and
execution time is premeditated for new resource. When the CT
value is less than the resource in private pool, it is continued,
or else algorithm requests from the public pool again. Finally,
the algorithm schedules resource with least PFT and task
continues.

B. DE-DE Algorithm Description

A cloud system receives many requests for a set of resource
to complete a job. Jobs are termed workflows. Each workflow
consists of a set of tasks which are dependent on others by
some means. This study uses the De-De algorithm which
considers a set of workflows and detects whether deadlocks
occur between them using the banker’s algorithm. The
detailed logical flow is shown:

Workflows F: {f1, f2, f3…fn}
Deadline E
Resource H
Predestined Start Value PSV
Predestined Finish Value PFV
Public resource pool FB
Private Resource Pool G
Rescheduling group N
Priority Pr

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

1025

Pending task PT
Application Remaining Time ART
Node set NS
Time & Cost value TCV
Job J with the instance i
Instance of workflows to be scheduled, Ii
Time taken for completion of a job, time ()
Temporary variables Wi and Ri
Storage request for the job getWriteSet ()
Storage allocation of the job getReadSet ()
Need of i resources in time t alloc (i, t) / need (i, t)
System safety check safetycheck ()
Deadlock Dependency Detection Algorithm (De-De)

The detailed flow of the De-De Algorithm is as:
1) F= Set of Workflows{ F=Workflows==set of tasks TS==single
task T}
2) function De-De (Ii , F)
3) R i← getReadSet ();
4) J ← J − (|Wi| − |Ri|);
5) alloc (i, t) ← alloc (i, t) + (|Wi| − |Ri |);
6) need (i, t) ← need (i, t) − |Wi|
7) if (safetycheck (Ii))
8) J ← J − |Ri |;
9) alloc (i, t) ← alloc(i, t) + | Ri |;
10) return true;
11) goto line 19;
12) else
13) J ← J + (|Wi | − | Ri |);
14) alloc (i, t) ← alloc(i, t) − (|Wi | − |Ri |);
15) need (i, t) ← need(i, t) + | Wi |;
16) return false;
17) goto line 54
18) End function
19) Perform initial schedule
20) Dependency De=0-5
21) For each W in TW
22) For each T in TS do
23) If T < De Do
24) If (H Є G) then
25) Schedule F in G
26) While (time(F) > E && iteration =F) do
27) Select node from NS with ↑Pr
28) If ni Э NS then
29) Add ni to NS
30) Iteration=iteration+1
31) End while
32) Schedule the H with ↓ PFV
33) De-De (Ii, H);
34) else select next task from TS
35) else select next workflow from WT
36) Else
37) Wi← getWriteSet ();
38) While (| Wi | > G && iteration =F) do
39) Request for H in FB
40) If PFV > ART then
41) Queue PT to execute
42) For each W in TW
43) For each T in TS do
44) If T < De Do
45) Select H Є FB then
46) Calculate TCV for new H
47) If TCV < (H Є G) then
48) Add H to FB
49) else select next task from TS
50) else select next workflow from WT

51) Schedule H with ↓ PFV
52) De-De (Ii,H);
53) End while
54) End else

The algorithm’s first line initializes a set of workflows

consisting of set of tasks T to a variable F. The Function De-
De algorithm is defined clearly including some parameters
associated with instance Ii i.e., r (t), alloc (i, t) and need (i, t))
are updated accordingly. In the third line function, De-De is
given where Ri is assigned with allocated workflow resources.
In variable G, remaining resource is calculated by subtracting
available resource in a private pool with already allocated and
requested resources. De-De algorithm checks if current
available storage is sufficient to satisfy job request (obtained
via getWriteSet ()). If not, job requests from a public resource
pool. In line seven, safety check algorithm verifies whether the
system is in a safe state for each workflow. Once verified, line
19 is called if it returns true. In 19th line, initial scheduling is
done which considers only Private resource pool and
schedules the workflows in a Private resource pool based on
attributes like communication cost, priority, and time, resource
allocation. A range is assigned for dependency; for instance:
dependency De value is between 0 - 5. The 23rd line checks
range and if dependency value is less than range,
allocation/request to resource is done. Next the algorithm
checks whether available resources are enough. If sufficient to
finish the job, workflow is requested in a private cloud or a
public cloud. Once scheduled, workflows in private cloud run
the task inside the private cloud till the deadline is met. The
iteration is repeated till deadline E is met, where the algorithm
continues by choosing a node Ni from node set NS with
highest priority. Then safety check is algorithm is sought.

If it returns true then system is safe state, or it is said to
wait, and next workflow considered. Simultaneously if
resource is not enough in a private pool, it is requested in a
public pool as in line 39. Line 40 in algorithm verifies whether
Predestined Finish value (PFV) is greater than ART, then
queues tasks to execute. Again dependency range is checked
for new, and if dependency value is less than range,
allocation/request to resource is done. Line 46 evaluates the
new TCV for new resource allocation. When value of TCV is
less than available resource in a private cloud, then public
cloud is requested. As TCV is considered less than old TCV
resource is added to set NS. Now schedule resource with
lowest PFV, suppose TCV value is larger, then verify inside
private cloud. De-De algorithm is invoked in line 41 to check
safety and if it returns true allocate resource with lowest PFV.
Finally, the new algorithm is well furnished to bind between
selecting public and private cloud and allocating requested
resources to a specific workflow with low cost/time and
without any deadlocks and dependencies between them.

C. Priority Based Decisive Algorithm (PBD)

The current algorithmic program’s drawback is that
computation time is incredibly low for truthful policies, and
deadlock avoidance is not considered. To offset this in the new

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

1026

work, there is a tendency to square measure enhancing 3
proposals.

As primary proposal, dependency is checked among
workflow tasks to avoid deadlocks. Tasks are in queue with
their priority basis. PBD finds a critical path in a workflow
and also performs initial scheduling. The dependency of
obtained path and execution time is checked, and if a schedule
is feasible it is scheduled in a passive state. If not feasible then
dependency and execution time are resolved where multiple
requests are verified. The scheduled task is taken, and
execution cost is discussed to find whether they are completed
within estimated cost. If yes, then they continue recursively till
all tasks in workflow are scheduled in active state.

Quantifying planning performance and allocation policy on
a Cloud infrastructure (hardware, software, services) for
various application and repair models below variable load,
energy performance, and system size is tough to tackle. To
change this, a CloudSim is proposed as a final proposal: a new
generalized/protractible simulation framework permitting
seamless modeling, simulation and experimentation of rising
Cloud computing infrastructures and management services.
Fig. 1 shows the algorithm description of PBD. The variables
used are

W- Set of Workflows
T- Set of Task
Pr- Priority
D- Deadline
De- Dependency
TQ- Task Queue
Pj- Time Duration
ES- Early Start
EC- Early Complete

IV. EXPERIMENTAL RESULTS

Cloudsim simulator was used to measure the performance
of the proposed algorithms. Two data centers were used. Two
experiments were conducted with 3 VM chosen randomly
from the two data centers and in the second scenario 6 VM
chosen form these two data centers. Makespan, cost, CPU
Time in ms and resource utilization using TCHC, De-De, and
PBD were computed. Tables I-IV show the result of
performance metrics mentioned above sentence.

TABLE I

MAKESPAN WHEN THREE VM WERE USED

Number of tasks TCHC De-De PBD

200 40108 38592 37893
400 81932 79835 77910
600 164549 160978 157803
800 333382 323722 317745

1000 675256 653804 637831

Table I shows the Makespan of PBD performs better than

TCHC in the range of 4.18% to 5.7% and better than De-De in
the range of 1.82% to 2.47%.

Table II shows the Cost of PBD performs better than TCHC
in the range of 4.2% to 6.18% and better than De-De in the
range of 2.44% to 3.84%.

TABLE II

COST WHEN THREE VM WERE USED

Number of tasks TCHC De-De PBD

200 13676 13381 13058
400 27688 27247 26549
600 55996 54139 52740
800 114028 111525 107575

1000 229933 224604 216139

TABLE III

CPU TIME IN MS FOR NUMBER OF RESOURCES USED IS THREE

Number of tasks TCHC De-De PBD

200 30214 29272 28656
400 61333 59084 56883
600 124233 119672 117269
800 249369 241404 234500

1000 505645 489819 473267

Table III shows the CPU Time of PBD performs better than

TCHC in the range of 5.2% to 7.5% and better than De-De in
the range of 2.02% to 3.79%. Fig. 2 shows the resource
utilization of PBD performs better than TCHC in the range of
4.39% to 5.6% and better than De-De in the range of 2.17% to
3.1%.

Fig. 2 Resource Utilization when number of resources is three

Table IV shows the makespan obtained when the number of

resources used is six.

TABLE IV
MAKESPAN FOR NUMBER OF VM=6

Number of tasks TCHC De-De PBD

200 21118 20396 19759
400 42011 41314 40406
600 85755 83807 81258
800 173950 170157 165978

1000 351642 343392 335858

75

80

85

90

95

100

200 400 600 800 1000

R
e
so
u
rc
e
 U
ti
liz
at
io
n

Number of Tasks

TCHC De De PBD

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

1027

Fig. 1 Algorithm description for PBD

It is seen that Makespan of PBD performs better than

TCHC in the range of 3.89% to 6.64% and better than De-De
in the range of 2.21% to 3.17%. Table V shows the cost of
resource utilization.

It is seen that cost of PBD performs better than TCHC in
the range of 5.13% to 7.05% and better than De-De in the
range of 1.89% to 3.7%. Table VI shows the CPU time in
millisecond.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

1028

TABLE V
COST FOR NUMBER OF VM=6

Number of tasks TCHC De-De PBD

200 7230 7104 6868
400 14353 13891 13375
600 28760 27995 27152
800 59817 57853 56765

1000 117468 114336 111102

TABLE VI

CPU TIME IN MS

Number of tasks TCHC De-De PBD

200 15867 15556 14996
400 32177 31603 30536
600 64418 63395 61180
800 129384 125764 121553

1000 258350 249290 240651

The CPU Time of PBD performs better than TCHC in the

range of 5.15% to 7.09% and better than De-De in the range of
3.4% to 3.66%. Fig. 3 shows the resource utilization.

Fig. 3 Resource Utilization for number of VM=6

Resource Utilization of PBD performs better than TCHC in

the range of 4.59% to 5.26% and better than De-De in the
range of 2.27% to 2.59%.

V. CONCLUSION

A new algorithmic rule called Priority Based Decisive
Algorithm (PBD) was proposed for SaaS Clouds that reduce
execution price while meeting a user-defined execution time.
Simulating the algorithmic rule with artificial workflows it
was compared with other algorithms including TCHC and De-
De. The algorithm’s computation has shown good results in
multiple workflows scheduling. Dependency among tasks
pulls down optimization algorithms. PBD outperforms other
algorithms when induced with inter-dependency among tasks
in a workflow. PBD can enhance and schedule multiple
workflows in hybrid cloud environments.

REFERENCES
[1] Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art

and research challenges. J. Internet Services and Applications 1(1), 7–18
(2010).

[2] Smith, J.E., Nair, R.: The architecture of virtual machines. Computer
38(5), 32–38 (2005).

[3] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-
science: An overview of workflow system features and capabilities,”
Future Gener. Comput. Syst., vol. 25, no. 5, pp. 528– 540, May 2009.

[4] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, K.
Vahi, K. Blackburn, D. Mayers, and M. Samidi, “Scheduling data-
intensive workflows onto storage-constrained distributed resources,” in
Proceedings of the 7th IEEE International Symposium on Cluster
Computing and the Grid, 2007, pp. 401–409.

[5] J. Bent, D. Thain, A. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and M.
Livny, “Explicit control in a batch-aware distributed file system,” in
Proceedings of Networked Systems Design and Implementation (NSDI),
San Francisco, California, USA, 2004, pp. 365–378.

[6] Fakhfakh, F., Kacem, H. H., & Kacem, A. H. (2014, September).
Workflow Scheduling in Cloud Computing: A Survey. In Enterprise
Distributed Object Computing Conference Workshops and
Demonstrations (EDOCW), 2014 IEEE 18th International (pp. 372-378).
IEEE.

[7] Verma, A., & Kaushal, S. (2013, September). Budget constrained
priority based genetic algorithm for workflow scheduling in cloud. In
Communication and Computing (ARTCom 2013), Fifth International
Conference on Advances in Recent Technologies in (pp. 216-222). IET.

[8] Watanabe, E. N., Campos, P. P., Braghetto, K. R., & Batista, D. M.
(2014, May). Energy Saving Algorithms for Workflow Scheduling in
Cloud Computing. In Computer Networks and Distributed Systems
(SBRC), 2014 Brazilian Symposium on (pp. 9-16). IEEE.

[9] Udomkasemsub, O., Xiaorong, L., & Achalakul, T. (2012, May). A
multiple-objective workflow scheduling framework for cloud data
analytics. In Computer Science and Software Engineering (JCSSE),
2012 International Joint Conference on (pp. 391-398). IEEE.

[10] Arya, L. K., & Verma, A. (2014, March). Workflow scheduling
algorithms in cloud environment-A survey. In Engineering and
Computational Sciences (RAECS), 2014 Recent Advances in (pp. 1-4).
IEEE.

[11] Rahman, M., Li, X., & Palit, H. (2011, May). Hybrid heuristic for
scheduling data analytics workflow applications in hybrid cloud
environment. In Parallel and Distributed Processing Workshops and Phd
Forum (IPDPSW), 2011 IEEE International Symposium on (pp. 966-
974). IEEE.

[12] Bittencourt, L. F., Senna, C. R., & Madeira, E. R. (2010, October).
Scheduling service workflows for cost optimization in hybrid clouds. In
Network and Service Management (CNSM), 2010 International
Conference on (pp. 394-397). IEEE.

[13] Prakash, V., & Bala, A. (2014, July). A novel scheduling approach for
workflow management in cloud computing. In Signal Propagation and
Computer Technology (ICSPCT), 2014 International Conference on (pp.
610-615). IEEE.

[14] Zhu, M., Wu, Q., & Zhao, Y. (2012, December). A cost-effective
scheduling algorithm for scientific workflows in clouds. In Performance
Computing and Communications Conference (IPCCC), 2012 IEEE 31st
International (pp. 256-265). IEEE.

[15] Xu, M., Cui, L., Wang, H., & Bi, Y. (2009, August). A multiple QoS
constrained scheduling strategy of multiple workflows for cloud
computing. In Parallel and Distributed Processing with Applications,
2009 IEEE International Symposium on (pp. 629-634). IEEE.

B. Arun Kumar is Research Scholar, Karpagam University. He is currently
pursuing his doctorate in India.

T. Ravichandran is Principal, Hindusthan Institute of Technology, India.

75

77

79

81

83

85

87

89

91

200 400 600 800 1000

R
e
so
u
rc
e
 U
ti
liz
at
io
n

Number of Tasks

TCHC De De PBD

