
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:7, 2015

367


Abstract—Steepest descent method is a simple gradient method

for optimization. This method has a slow convergence in heading to
the optimal solution, which occurs because of the zigzag form of the
steps. Barzilai and Borwein modified this algorithm so that it
performs well for problems with large dimensions. Barzilai and
Borwein method results have sparked a lot of research on the method
of steepest descent, including alternate minimization gradient method
and Yuan method. Inspired by previous works, we modified the step
size of the steepest descent method. We then compare the
modification results against the Barzilai and Borwein method,
alternate minimization gradient method and Yuan method for
quadratic function cases in terms of the iterations number and the
running time. The average results indicate that the steepest descent
method with the new step sizes provide good results for small
dimensions and able to compete with the results of Barzilai and
Borwein method and the alternate minimization gradient method for
large dimensions. The new step sizes have faster convergence
compared to the other methods, especially for cases with large
dimensions.

Keywords—Convergence, iteration, line search, running time,
steepest descent, unconstrained optimization.

I. INTRODUCTION

PTIMIZATION is the branch of applied mathematics
which studies processes for obtaining the best decision

which gives the maximum or minimum value of a function.
Optimization problems can be categorized into the constraint
optimization and the unconstraint optimization [5]. The
optimization problem can be solved analytically or
numerically. For the nonlinear unconstraint optimization
problems with many variables, the issue is the problems are
not able to be solved by analytical methods. We need a
numerical method to solve these problems. In general, the
numerical methods are iterative and one of them is the steepest
descent method.

The steepest descent method was first introduced by
Cauchy in 1847 [3], which is one of the most basic procedures
to minimize differentiable function of several variables. In
some cases, this method has slow convergence in leading to an
optimal solution, this occurs because of the zigzag form of the
steps. In recent years, it has been more apparent that an
important issue of the steepest descent method is the selection
of the step size. This selection may affect fast or slow of the
convergence of a function to an optimal solution. Barzilai and

Bib Paruhum Silalahi and Sugi Guritman are lecturers at the Department

of Mathematics, Faculty of Mathematics and Natural Sciences, Bogor
Agricultural University, Jalan Meranti, Kampus IPB Bogor 16680, Indonesia
(e-mail: bibparuhum@gmail.com, guritman@yahoo.co.id).

Djihad Wungguli is with the Department of Mathematics, Faculty of
Mathematics and Natural Sciences, Bogor Agricultural University, Jalan
Meranti, Kampus IPB Bogor 16680, Indonesia (e-mail:
djihadwungguli@gmail.com).

Borwein [1] refined this method by modifying the step size
and the performance of the results are pretty well for large
dimension problems.

Barzilai and Borwein results have sparked a lot of research
on the method of steepest descent. Studies were conducted to
obtain a step size that enables rapid convergence and
monotonous. A related research is carried out by [4], called
alternate minimization gradient method with the idea of
combining the step size alternates between minimizing the
value of the function and the norm along the line of steepest
descent gradient. Another research was conducted by [7], with
a new step size at even iterations and exact line search at odd
iterations. Based on the studies that have been conducted, we
modify the step size of the steepest descent method. Then we
compare the results of our new step sizes algorithm against
steepest descent method, Barzilai and Borwein method, the
alternate minimization gradient method and Yuan method in
terms of the iterations number and the running time.

II. STEEPEST DESCENT METHOD AND ITS VARIANTS

Steepest descent (SD) method is a simple gradient method
for the unconstrained optimization [2]:

minܠ∈ோ೙ ݂ሺܠሻ,																																								 (1)

where ݂ሺܠሻ is a continuous differential function in ܴ௡. This
iterative method has the following form:

௞ାଵܠ ൌ ௞ܠ ൅	ߙ௞ሺെ܏௞ሻ,																										 (2)

where ܏௞ ൌ ௞ሻܠሺ܏ ൌ ሻ at theܠ௞ሻ is the gradient vector of ݂ሺܠሺ݂׏
current iteration at point ܠ௞ and ߙ௞ ൐ 0 is the step size [6].
The step size ߙ௞ can be obtained with exact line search:

௞ߙ ൌ ௞ܠ൛݂൫݊݅݉݃ݎܽ ൅ ܽሺെ܏௞ሻ൯ൟ															 (3)

Searching the step size with exact line search (3) causes the

slow convergence toward an optimal solution, this happens
because the zigzag form of the steps. For quadratic functions
optimization case, ߙ௞ with exact line search can be simplified
to:

௞ߙ
ௌ஽ ൌ

ೖ܏
೅܏ೖ

ೖ܏
೅஺܏ೖ

																																								 (4)

where A is a Hessian matrix.

Steepest descent algorithm is as:
Step 0 Given a starting point ܠ଴ ∈ Թ௡ and a tolerance limit

0 ൏ ߝ ൏ 1. Set ݇ ൌ 0.
Step 1 Determine ܓ܏. If ‖ܓ܏‖ ൑ .stop ,ߝ
Step 2 Determine ߙ௞ which minimizes ݂ሺܠ௞ ൅	ߙ௞ܓ܌ሻ.
Step 3 Calculate ܠ௞ାଵ ൌ ௞ܠ െ	ߙ௞ܓ܏.

Steepest Descent Method with New Step Sizes

Bib Paruhum Silalahi, Djihad Wungguli, Sugi Guritman

O

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:7, 2015

368

Step 4 ݇ ൌ ݇ ൅ 1, and go to Step 1.
Determining of the step size in the steepest descent method

has become an issue of concern. This step size determination
may affect fast or slow convergence to the optimal solution.
Several step sizes that have been studied are described in the
following.

A. Barzilai and Borwein Method

Barzilai and Borwein (BB) gradient method [1] is a
modification of the steepest descent method by changing the
step size ߙ௞. The main idea of Barzilai and Borwein method is
the usage of the information in the previous iteration to
determine the step size in the next iteration. The step size of
this method is derived from the two-point approach to the
secant equation based on the quasi-Newton method, namely:

௞ାଵܠ ൌ ௞ܠ െ	ܤ௞

ିଵ܏௞ (5)

where ܤ௞

ିଵ ൌ is the identity matrix. With the Taylor ܫ and ܫ௞ߙ
series expansion for the quadratic approach, ܤ௞ can be
determined by:

௞ܤ ൌ arg	min஻∈Թ‖ି࢑࢙ܤ૚ െ ૚‖ଶ (6)ି࢑࢟

or

௞ܤ ൌ arg	min஻షభ∈Թ‖ି࢑࢙૚ െ ૚‖ଶ, (7)ି࢑࢟ଵିܤ

where ି࢑࢙૚ ൌ ࢑ܠ െ ૚ି࢑࢟ ૚, andି࢑ܠ ൌ ௞܏ െ ௞ܤ ௞ିଵ. From܏
ିଵ ൌ

 :and (7), two step sizes are obtained (6) ,ܫ௞ߙ

௞ߙ
஻஻ଵ ൌ

ೖషభܛ
೅ ష૚࢑࢙
ೖషభܛ
೅ ష૚࢑࢟

 (8)

and

α୩
୆୆ଶ ൌ

ౡషభܛ
౐ ష૚ܓܡ
ౡషభܡ
౐ ష૚ܓܡ

						 (9)

Barzilai and Borwein algorithm is presented as in the

following.
Step 0 Given a starting point ܠ଴ ∈ Թ௡ and a tolerance limit

0 ൏ ߝ ൏ 1. Set ݇ ൌ 0.
Step 1 Determine ܓ܏. If ‖ܓ܏‖ ൑ .stop ,ߝ
Step 2 If ݇ ൌ 0 then specify ߙ଴ with exact line search. If not

determine ߙ௞ with

௞ߙ ൌ
௞ିଵܛ
் ૚ି࢑࢙
௞ିଵܛ
் ૚ି࢑࢟

,											or									ߙ௞ ൌ
௞ିଵܛ
் ૚ି࢑࢟
௞ିଵܡ
் ૚ି࢑࢟

	,

a. where ି࢑࢙૚ ൌ ࢑ܠ െ ૚ି࢑࢟ ૚, andି࢑ܠ ൌ ௞܏ െ
 .௞ିଵ܏

Step 3 Calculate ܠ௞ାଵ ൌ ௞ܠ െ	ߙ௞ܓ܏.
Step 4 ݇ ൌ ݇ ൅ 1, and go to Step 1.

B. Alternate Minimization Gradient Method

In some sense, the principle for minimizing a continuous
and twice differentiable function ݂ሺܠሻ is equivalent with
minimizing the gradient norm ‖܏ሺܠሻ‖. That is the basic idea of
alternate minimization gradient (AM) method [4]. This
method is a modification of the steepest descent method that
alternates the step size between minimizing the norm function
value and gradient along the line of steepest descent. More

precisely ݇ ൒ 1, we choose the step size so that

ଶ௞ିଵߙ ൌ arg	min௔∈Թሼ‖܏ሺܠଶ௞ିଵ െ (10)															ଶ௞ିଵሻ‖ሽ܏ߙ

and

ଶ௞ߙ ൌ arg	min௔∈Թሼ݂ሺܠଶ௞ െ (11)																														ଶ௞ሻሽ.܏ߙ

From (10) and (11), it can be obtained:

௞ߙ
஺ெ ൌ ൞

	 ೖ܏
೅஺ܓ܏

ೖ܏
೅஺మܓ܏

,							if	݇	odd,

		
ೖ܏
೅ܓ܏

ೖ܏
೅஺ܓ܏

,									if	݇	even.
																																										(12)

Alternate minimization gradient algorithm is presented as in
the following.
Step 0 Given a starting point ܠ଴ ∈ Թ௡ and a tolerance limit

0 ൏ ߝ ൏ 1. Set ݇ ൌ 0.
Step 1 Determine ܓ܏. If ‖ܓ܏‖ ൑ .stop ,ߝ

Step 2 If k odd then assign ߙ௞ ൌ
ೖ܏
೅஺ܓ܏

ೖ܏
೅஺మܓ܏

 .

If not assign ߙ௞ ൌ
ೖ܏
೅ܓ܏

ೖ܏
೅஺ܓ܏

 .

Step 3 Calculate ܠ௞ାଵ ൌ ௞ܠ െ	ߙ௞ܓ܏.
Step 4 ݇ ൌ ݇ ൅ 1, and go to Step 1.

C. Yuan Method

Yuan gradient method [7] uses the step sizes alternately as
in the AM method. However, Yuan method uses a new step
size. Yuan method uses the exact line search (4) on odd
iterations, and then uses the following step size on even
iterations:

ܽଶ௞
௒ ൌ

ଶ

ඥሺଵ ఈమೖషభ⁄ ିଵ ఈమೖ⁄ ሻమାସ‖܏మೖ‖మ ⁄మೖషభ‖మܛ‖ ାଵ ఈమೖషభ⁄ ାଵ ఈమೖ⁄
	 (13)

where ܛଶ௞ିଵ ൌ ଶ௞ܠ െ ଶ௞ିଵܠ ൌ െߙଶ௞ିଵ܏ଶ௞ିଵ. In general the step
size ߙ௞	of Yuan method is written as:

௞ߙ ൌ ቊ
௞ߙ
ௌ஽,																		if	݇	odd

			ܽ௞
௒			,																		if	݇	even,

			 (14)

and Yuan algorithm is presented as in the following.
Step 0 Given a starting point ܠଵ ∈ Թ௡ and a tolerance limit

0 ൏ ߝ ൏ 1.
Step 1 Determine ܏૚ and A. If ‖܏૚‖ ൑ ݇ stop. Set ,ߝ ൌ 1.
Step 2 Determine ߙଶ௞ିଵ. Then calculate ܠଶ௞ ൌ ଶ௞ିଵܠ െ

 .ଶ୩ିଵ܏ଶ௞ିଵߙ	
Step 3 If ‖܏૛࢑‖ ൑ .stop ,ߝ
Step 4 Determine ߙଶ௞ and ܛଶ௞ିଵ ൌ ଶ௞ܠ െ ଶ௞ିଵ. Thenܠ

determine

ܽଶ௞
௒ ൌ

2

ටሺ1 ⁄2݇െ1ߙ െ 1 ⁄2݇ߙ ሻ2 ൅ 4ฮ2݇܏ฮ
2
2݇െ1‖2ൗܛ‖ ൅ 1 ⁄2݇െ1ߙ ൅ 1 ⁄2݇ߙ

Assign ܠଶ௞ାଵ ൌ ଶ௞ܠ െ	ܽଶ௞

௒ .ܓ૛܏
Step 5 If ‖܏૛࢑ା૚‖ ൑ .stop ,ߝ
Step 6 Assign ݇ ൌ ݇ ൅ 1, and go to Step 2.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:7, 2015

369

III. NEW STEP SIZES

It has been discussed in the previous section that Yuan uses
the step size with exact line search on odd iterations and then
uses a step size (13) on even iterations as written in (14).
Based on Yuan method, we modified steepest descent method
by using two new step sizes. First we form an algorithm with
the following steps:

ଶܠ ൌ ଵܠ െ ଵ܏ଵߙ
ଷܠ ൌ ଶܠ െ ଶߙ

௒܏ଶ
ସܠ ൌ ଷܠ െ ଷߙ

௒܏ଷ (15)
ହܠ	 ൌ ସܠ െ ସ܏ସߙ

where ߙଵ and ߙସ are the step sizes of the search process using
the exact line search (4), whereas ߙଶ௒ and ߙଷ௒ using Yuan step
size (13). Iteration process (15) is an early form of the whole
iteration process, so the iteration process (15) will continue
until a solution is found. In general ߙ௞ of the form (15) can be
written as:

௞ߙ ൌ ቊ
௞ߙ
ௌ஽,						if	݉݀݋ሺ݇, 4ሻ ൌ 0	or	1

		ܽ௞
௒		,							if	݉݀݋ሺ݇, 4ሻ ൌ 2	or	3		

	 (16)

New Step Size Algorithm 1
Step 0 Given a starting point ܠ଴ ∈ Թ௡ and a tolerance limit 0 ൏ ߝ ൏

1. Set ݇ ൌ 1.
Step 1 Determine ܓ܏ dan A. If ‖ܓ܏‖ ൑ .stop ,ߝ
Step 2 If ݉݀݋ሺ݇, 4ሻ ൌ 0	or	1 then

௞ߙ ൌ
ೖ܏
೅ܓ܏

ೖ܏
೅஺ܓ܏

, else determine ܛ௞ିଵ ൌ ௞ܠ െ ௞ିଵ and ܽ௞ܠ
௒ ൌ

ଶ

ඥሺଵ ఈೖషభ⁄ ିଵ ఈೖ⁄ ሻమାସ‖܏ೖ‖మ ⁄ೖషభ‖మܛ‖ ାଵ ఈೖషభ⁄ ାଵ ఈೖ⁄
.

Step 3 Calculate ܠ௞ାଵ ൌ ௞ܠ െ	ߙ௞ܓ܏
Step 4 ݇ ൌ ݇ ൅ 1, and go to Step 1.

For the second new step, we form algorithm with the
following steps:

ଶܠ ൌ ଵܠ െ ଵ܏ଵߙ
ଷܠ ൌ ଶܠ െ ଶ܏ଶߙ
ସܠ ൌ ଷܠ െ ଷߙ

௒܏ଷ (17)
ହܠ ൌ ସܠ െ ସߙ

௒܏ସ

where ߙଵ and ߙଶ	are the step sizes using the exact line search
(4), whereas ߙଷ௒ and ߙସ௒ using Yuan step size (13). Similarly to
the iteration process (15), the iteration in (17) also will
continue until a solution is found. In general ߙ௞	 of the form
(17) can be written as:

௞ߙ ൌ ቊ
௞ߙ
ௌ஽,								if	݉݀݋ሺ݇, 4ሻ ൌ 1	or		2

		ܽ௞
௒		,							if	݉݀݋ሺ݇, 4ሻ ൌ 0	or	3		

												 (18)

New Step Size Algorithm 2
Step 0 Given a starting point ܠ଴ ∈ Թ௡ and a tolerance limit 0 ൏ ߝ ൏

1. Set ݇ ൌ 1.
Step 1 Determine ܓ܏ dan A. If ‖ܓ܏‖ ൑ .stop ,ߝ
Step 2 If ݉݀݋ሺ݇, 4ሻ ൌ 1	or	2	then 	

௞ߙ ൌ
ೖ܏
೅ܓ܏

ೖ܏
೅஺ܓ܏

, else determine ܛ௞ିଵ ൌ ௞ܠ െ ௞ିଵ and ܽ௞ܠ
௒ ൌ

ଶ

ඥሺଵ ఈೖషభ⁄ ିଵ ఈೖ⁄ ሻమାସ‖܏ೖ‖మ ⁄ೖషభ‖మܛ‖ ାଵ ఈೖషభ⁄ ାଵ ఈೖ⁄
.

Step 3 Calculate ܠ௞ାଵ ൌ ௞ܠ െ	ߙ௞ܓ܏

Step 4 ݇ ൌ ݇ ൅ 1, and go to Step 1.

IV. NUMERICAL RESULTS

This section presents comparison of numerical results of
each method described in the previous section, namely SD,
BB, AM, Yuan, algorithm 1 and algorithms 2. The step size of
SD method uses (4) which is a simplification of the exact line
search. BB method is divided into two parts, namely BB1 and
BB2. BB1 uses step size (8) and BB2 uses step size (9). We
compare the number of iterations and the running time of each
method for obtaining the minimum value. We use nonlinear
function with quadratic forms. Quadratic functions used in this
study were generated randomly in the form of:

݂ሺܠሻ ൌ
1
2
ሺܠ െ ,ଵߣሺ݃ܽ݅ܦሻ்∗ܠ … , ܠ௡ሻሺߣ െ ܠ				,ሻ∗ܠ ∈ Թ௡,

with ݊ ൌ 2, 3, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. Vector
௜ܠ
∗	ሺ݅ ൌ 1, ⋯ , ݊ሻ	is an integer random number in the interval [-

5.5]. Furthermore ߣଵ ൌ 1 and ߣ௡ ൌ 10,100,1000, are the
condition of the Hessian matrix of the function. Next ߣ௜ሺ݅ ൌ
2,⋯ , ݊ െ 1ሻ is an integer random number in the interval
ሾ1, ௡, the starting point isߣ ௡ሿ. For all dimensions and theߣ
zero vector ሺ0,⋯0ሻ் and the stopping criteria is ‖܏௞‖ ൑
10ି଼. Experiments were performed 5 times for each
dimension and each ߣ௡ of each method, so that the
experiments were carried out 105 times for each dimension.
The total experiments for all dimensions were 1260 times. The
average number of iterations and the running time are
presented in Tables I and II.

Based on the results, in general it can be seen that the
relationship between the dimensions, ߣ௡ with the number of
iterations and the running time. For the small dimension cases
(n = 2 & 3), the value of ߣ௡	 does not give significant effect to
the number of iterations and the running time. This means that
the larger ߣ௡	 does not guarantee that the number of iterations
and the running time will be larger (Tables I and II). For the
larger dimensions (n = 10, 20, ⋯,100), it can be seen that the
larger ߣ௡, the number of iterations and the running time will be
larger (Figs. 1-3). Furthermore, we could not see that the
larger dimension cause the larger iteration (Figs. 1 (a), 3 (a)).
By contrast for the running time, it can be seen that the larger
the dimension, the larger the running time become (Figs. 1 (b),
3(b)).

It can be seen that the Yuan method has found a solution of
small dimension quadratic function problem with the smallest
minimum number of iterations and the running time.
Nevertheless the algorithm 1 and 2 are able to compete with
Yuan method. For larger dimensions, Yuan method gives poor
results, especially at ߣ௡ ൌ 100 and ߣ௡ ൌ 1000. By contrast
to the algorithm 1 and 2, for large dimension cases with all
sizes of ߣ௡, algorithm 1 and 2 is better in finding solutions in
term of the number of iterations and the running time
compared to BB methods, AM method and Yuan method
(Figs. 1-3). We present the rate of convergence of each
method in Fig. 4 for n = 100 dan ߣ௡ = 100. We can see that
the algorithm 1 and 2 have faster convergence rate compared

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:7, 2015

370

to the others.

TABLE I
THE AVERAGE NUMBER OF ITERATIONS

n
λn

The average number of iterations

SD BB1 BB2 AM Yuan Alg.1 Alg.2
2 10 15.8 9.4 8.8 7.8 3.0 4.0 5.0

100 17.6 10.2 9.4 8.0 3.0 4.0 5.0

1000 18.0 9.6 8.2 6.6 3.0 4.0 5.0
3 10 58.0 16.0 15.4 21.6 15.0 12.4 14.8

100 446.0 19.4 15.0 41.2 9.4 9.2 11.4

1000 ** 25.2 14.8 63.2 7.0 8.0 10.6
10 10 71.2 28.8 28.4 36.2 34.0 26.6 26.6

100 572.2 73.4 59.0 82.8 77.2 55.4 50.8

1000 ** 84.4 62.4 177.6 215.8 66.4 49.8
20 10 69.8 28.8 31.4 39.2 33.4 27.2 28.8

100 611.8 66.2 63.6 87.6 92.6 53.2 63.0

1000 ** 129.0 102.0 250.4 256.6 90.0 101.2
30 10 74.4 29.2 30.8 38.4 32.2 27.4 29.8

100 618.0 81.8 84.0 94.8 119.6 67.2 78.4

1000 ** 161.2 90.4 214.0 372.2 117.6 96.2
40 10 71.0 31.4 31.4 40.2 30.8 29.2 27.8

100 619.8 85.8 81.0 95.6 124.6 72.8 72.4

1000 ** 158.8 121.4 234.0 559.0 138.4 116.0
50 10 70.4 30.4 29.8 40.4 33.6 28.8 26.0

100 568.4 83.0 81.4 92.6 105.8 69.6 73.0

1000 ** 169.6 127.2 256.0 741.4 115.2 123.6
60 10 73.0 32.0 30.6 38.0 32.8 30.6 25.6

100 541.8 83.6 79.6 91.6 107.8 69.8 69.6

1000 ** 153.0 125.0 209.2 431.4 126.8 120.2
70 10 72.0 30.0 29.8 38.8 32.2 28.4 28.0

100 588.3 98.2 84.2 103.2 114.6 77.4 81.8

1000 ** 174.8 122.0 321.0 514.2 127.8 129.2
80 10 73.4 32.6 30.2 39.4 32.8 28.2 27.0

100 597.8 86.0 90.2 110.0 114.2 77.6 78.2

1000 ** 151.6 133.4 236.6 631.0 132.2 126.6
90 10 73.6 32.2 31.4 39.4 32.8 28.2 25.4

100 671.2 94.4 87.8 105.0 127.8 79.8 80.6

1000 ** 160.0 147.0 249.6 676.8 128.0 133.0
100 10 73.2 32.6 30.8 39.2 34.2 29.2 26.8

100 566.6 85.2 80.2 93.6 113.6 77.0 74.8

1000 ** 170.6 146.8 261.8 540.2 139.4 137.8

** More than 2000 iterations

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:7, 2015

371

TABLE II
THE AVERAGE RUNNING TIME

n λn The average running time

SD BB1 BB2 AM Yuan 1 2

2 10 1.2158 0.7921 0.7430 0.6681 0.3445 0.4234 0.4813

100 1.3592 0.8915 0.7654 0.7447 0.3729 0.4249 0.5298

1000 1.2957 0.7972 0.6808 0.5900 0.3510 0.4351 0.4789

3 10 4.1901 1.5578 1.2570 1.7168 1.2100 1.0527 1.1979

100 38.2374 1.6251 1.1804 3.0742 0.8563 0.8072 0.9336

1000 ** 2.3408 1.2184 4.7670 0.6885 0.8337 0.9288

10 10 9.1579 4.0018 3.8183 4.6807 4.4170 3.5215 3.4583

100 178.4230 9.9522 8.0304 10.7603 9.9536 7.0518 6.6856

1000 ** 10.0730 7.4047 20.6736 29.8327 7.4251 5.5743

20 10 13.9018 5.9759 6.5152 7.8569 6.7487 5.5918 5.7751

100 161.2717 13.5476 13.0366 17.3494 18.5229 10.4792 12.3972

1000 ** 27.3802 20.9280 53.2933 61.3703 17.6327 20.4013

30 10 19.8876 8.0823 8.4538 10.5365 8.8325 7.4604 8.1181

100 257.1545 23.5515 24.0258 27.0576 34.6199 18.6904 21.7436

1000 ** 50.7939 26.3331 64.7710 133.1709 33.0935 26.9119

40 10 24.1604 11.1630 11.0736 14.0317 10.7476 10.1022 9.8407

100 298.8377 32.5804 30.0823 32.6756 42.8027 30.0220 25.4911

1000 ** 63.8277 46.8107 89.4547 282.7427 51.3329 41.6764

50 10 25.9427 11.7516 11.5382 15.2466 12.7024 11.0449 10.1426

100 306.8892 34.1412 33.8299 36.8299 42.0616 27.4626 28.6959

1000 ** 83.3517 60.3106 121.2303 472.8374 49.5199 53.4718

60 10 36.3882 16.5356 15.6462 19.2288 16.4662 15.3770 12.7958

100 363.0106 43.4831 41.6120 46.6732 54.9497 34.7719 34.9854

1000 ** 85.6454 67.6937 112.0454 271.2039 66.8134 60.9172

70 10 40.2148 17.4249 17.2778 21.9776 18.3037 16.1753 16.0799

100 499.9960 58.9287 50.5146 58.8435 65.3898 43.6303 46.0443

1000 ** 118.4859 78.4548 140.2313 410.2627 75.4451 75.3167

80 10 45.6855 21.2567 19.5432 24.9432 20.5602 17.8875 17.1437

100 560.9794 59.3693 62.4149 72.1113 74.9126 49.6631 50.0332

1000 ** 113.1994 96.2621 229.8008 517.2911 88.1097 84.3816

90 10 51.3049 22.9283 22.1720 28.2006 23.4393 20.4438 18.3391

100 686.0457 73.2183 67.1283 77.4596 95.3471 57.6106 58.3811

1000 ** 138.6705 124.9331 206.0923 699.7920 98.0156 100.0168

100 10 55.3843 25.3197 24.0521 30.0698 25.9653 22.5381 20.8658

100 603.5062 70.9071 66.3028 74.8516 91.7633 61.3530 59.6863

1000 ** 160.4586 133.0056 236.0443 603.7740 114.6884 116.0814

** More than 1800 second

Fig. 1 Comparison of the average number of iterations (a) and the running time (b) of the steepest descent method variants for ߣ௡ = 10

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:7, 2015

372

Fig. 2 Comparison of the average number of iterations (a) and the running time (b) of the steepest descent method variants for ߣ௡ = 100

Fig. 3 Comparison of the average number of iterations (a) and the running time (b) of the steepest descent method variants for ߣ௡ = 1000

Fig. 4 The convergence rate of steepest descent method variants, for n = 100 dan ߣ௡ = 100

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:7, 2015

373

V. CONCLUSION

Yuan method provides smaller number of iterations and the
running time for small dimensions of quadratic functions case.
However, Yuan method gives poor performance for the large
dimensions and the large ߣ௡ cases. We modified the step size
of Yuan method. The new step size modification algorithms
provide better performance for quadratic functions case with
large dimensions or large ߣ௡ compared to Yuan method. Even
the new step size modification algorithms were able to surpass
the performance of the Barzilai and Borwein method and the
alternate minimization gradient method.

ACKNOWLEDGMENT

This work was supported by the Directorate General of
Higher Education Ministry of National Education Indonesia
(082/SP2H/PL/DIT.LITABMAS/ II/2015).

REFERENCES
[1] Barzilai J, Borwein JM. 1988. Two point step size gradient methods.

IMA Journal of Numerical Analysis, 8: 141-148.
[2] Bazara MS, Sherali HD, Shetty CM. 2006. Nonlinear Programming:

Theory and Algorithms. USA: Wiley-Interescience.
[3] Cauchy A. 1847. General method for solving simultaneous equations

Systems, Comp. Rend. Sci. Paris, 25: 46-89
[4] Dai YH, Yuan Y. 2003. Alternate minimization gradient method. IMA

Journal of Numerical Analysis, 23: 377-393.
[5] Griva I, Nash SG, Sofer A. 2009. Linear and Nonlinear Optimization.

USA: Society for Industrial and Applied Mathematics.
[6] Sun Wenyu, Yuan Y. 2006. Optimization Theory and Methods:

Nonlinear Programming. New York: Spinger Science, Business Media.
[7] Yuan Y. 2006. A new stepsize for the steepest descent method. Journal

of Computational Mathematics, 24:149-156.

