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Abstract—Sampled-data controller is presented for solid oxide 

fuel cell systems which is expressed by a sector bounded nonlinear 

model. The proposed control law is obtained by solving a convex 

problem satisfying several linear matrix inequalities. Simulation 

results are given to show the effectiveness of the proposed design 

method. 

 

Keywords—Sampled-data control, Sector bound, Solid oxide fuel 

cell, Time-delay. 

I. INTRODUCTION 

OLID OXIDE FUEL CELL (SOFC) has attracted 

considerable interest as it offers wide application ranges, 

flexibility in the choice of fuel, high system efficiency and 

rapid load following capability [1]-[4]. In this regard, during 

the last several years, many researches have been investigated 

the dynamic model for simulating transient behavior as well as 

designing model-based controllers of the SOFC systems. In [1], 

a mathematical dynamic model for SOFC stack is simply 

presented. Its detailed model with temperature dynamics is 

developed in [5]. It is important to establish control over the 

fuel cell voltage because of its heavily nonlinear behavior and 

dependence on disturbances such as load current and inlet 

temperatures. However, these mathematical models have a 

difficulty on the controller design due to its complexity. Thus, 

based on the experimental input-output data, numerical 

modeling techniques such as support vector machine, T-S fuzzy, 

and neural network have been proposed in [3], [4]. In [3], a 

model predictive control method for SOFC systems is 

presented by use of a simplified dynamic model which is 

obtained by subspace identification method.  

The previous studies have been conducted by use of 

input-output data based model for control of SOFC systems. It 

should be pointed out that sampled-data control scheme is very 

useful since it is possible to handle digital controller and 

increasing research efforts have been devoted to sampled-data 

control systems with the development of modern high-speed 

computers, microelectronics, and communication networks. 

Recently, the control technique has been applied to the SOFC 

systems due to its slow dynamics and tight operating 

constraints [4], [5]. In this paper, we consider a sector bounded 

nonlinear model to handle SOFC systems and propose a 
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sampled-data control method for the systems. The sector 

bounded nonlinear systems, which have a feedback connection 

with a linear dynamical system and nonlinearity satisfying 

certain sector type constraints, have been extensively studied in 

control theory research area. Since the pioneer work of Lur'e 

was presented in 1940', the notion of absolute stability has 

played an important role in stability analysis and controller 

design problems [6].  

To the best of authors' knowledge, there are no approaches 

considering sampled-data for SOFC systems. The proposed 

nonlinear control method guarantee closed-loop stability, a 

stabilization criterion is proposed in terms of LMIs which can 

be solved very efficiently by convex algorithms [8]. 

Finally, we demonstrate the effectiveness of the proposed 

approach via numerical simulations.  

II.  PROBLEM STATEMENT 

Consider the dynamics of an SOFC system [2] as shown in 

Fig. 1 and assume that all states are available. As a widely 

adopted dynamic model of the SOFC system, the average 

voltage magnitude of the fuel cell stack is determined by the 

partial pressure of hydrogen, oxide and water. 

Table I contains the parameters of the SOFC model. 

Applying Nernst's equation, the output of the SOFC can be 

modeled as: 

 

			�� = ��[�� + 	
�
�

 �� �������/���.����
������ ]	              (1) 

 

where ��� , � � , ���  are partial pressures of hydrogen, oxygen 
and water. Also, the dynamics of fuel processor and the stack 

voltage are: 

 !"� = �#� (!
 − !�)                                 (2) 
 �'" = �() (�� − �* − +,-)                         (3) 
 

where !� is the hydrogen flow rate, !
 is inlet fuel flow rate, �* 
is stack voltage and ,- is external current load that is assumed 
to be not changed. 

The dynamic equation of the partial pressure inside the 

channel of hydrogen, oxygen and water are as: 

 ���" = 1/��0�� �!� − 20(,* − ���0���, � �" = 1/ �0 � 2 !�/�3 − 0(,* − � �0 �4 ��� " = �#���5��� �20(,* − ��� 0�� �,                (4) 
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where ( ) /S O SI V V r= −  
is stack current.  

 

 

Fig. 1 Solid oxide fuel cell (SOFC) system dynamic model 

 

In order to transform states around its equilibrium point, let 

us define the following states and input: 
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where
2 2 2
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are operating points of 

each states. 

It should be noted that the pressure of water 
2H Op  has 

constant value because external current load 
DI  
is assumed to 

be not changed in this paper. 

Then, the variation of the stack current is expressed as: 
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Therefore, the transformed state space model is described as: 
 

 
( ) ( ) ( ( )) ( ),C C Cx t A x t F g x t B u t= + +&                      (7) 

 

where 6(7) = [6�	6�	6�	68]� ∈ :;  is the states, ( )u t  is the fuel 

flow rate, 
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In order to design a control law, consider the following 

sampled-data state feedback controller: 
 

( ) ( )ku t Kx t=                           (9) 

 

In this paper, the control signal is assumed to be generated by 

using a zero-order-hold (ZOH) function with a sequence of 

hold time
0 10 limk k

k
t t t t

→∞
≤ < < < < = +∞L L . 

Also, the sampling is not required to be periodic, and the 

only assumption is that the distance between any two 

consecutive sampling instants is less than a given bound. 

Specially, it is assumed that: 

 

1 ,k kt t h+ − ≤  

 

for all 0k ≥ , where h  represents the upper bound of the 
sampling periods. 

Define d(t) = t − 7K  and 7K = 7 − �7 − L(7)�, then the system 
(7) can be represented as:  

 

( ) ( ) ( ( )) ( ( )) ,C C Cx t A x t F f q t B Kx t d t= + + −&  

 ( ) ( )q t Cx t=                                   (10) 

III. MAIN RESULT 

In this section, we derive a LMI condition for sampled-data 

controller design for Lur’e system with sector nonlinearities. 

For the simplicity on matrix representation,
7 ( 1,2, , )n n

ie i n×∈ℜ = K , e.g., [ ]2 , ,0 ,0 ,0 ,0n n n n n ne O I= and the 

augmented vectors are defined as: 

 

( ) ( ) ( ( )) ,T T T

ax t x t f v t =  
 

( ) [ ( ) ( ( )) ( ( )) ( ( ( )))T T T T Tt x t f v t x t h t f v t h tξ = − −  

( ) ( ( )) ( ) ( ( )) ]T T T Tx t h f v t h x t f v t− − &&  
 

and define the matrices: 

 ΞN� = [O�	O�]PN[OQ	OR]� + [OQ	OR]PN[O�	O�]� , ΞN� = [O�	O�]SN[O�	O�]� + [O�	OT]SN[O�	OT]� , ΞN� = ℎ�[OQ	OR]ℛN[OQ	OR]�  −[O� − O�		O� − O8		O� − O�	O8 − OT] WℛN X̅∗ ℛ[\ [O� − O�		O� − O8		O� − O�	O8 − OT]�, Φ = [<^		H^		G_		0		0		0	 − ^		0], _ = 0^, Λ = Labc{Λ��e�(7)�, Λ��e�(7)�,… , Λg�eg(7)�}, Λi = Labc{Λi��e�(7)�, Λi��e�(7)�,… , Λig�eg(7)�}, Δ� = Labc{k�, k�, . . , kg}, 	Δ� = Labc{b� , b�, . . , bg}, Δi� = Labclk[�, k[�, . . , k[gm, 	Δi� = Labc{b[� , b[�, . . , b[g}, 
 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:9, No:8, 2015

777

 

 

Then, the nonlinear function n(e(7)) ) and n"(e(7))  can be 
expressed as: 

 n�e(7)� = Λe(7), n"�e(7)� = Λie"(7),	                      (11) 
 

and the parameters Λ, Λi	 belong to the following set: 
 Φ ≔ {(Λ, Λi)}|	Λ ∈ Co{Δ�, Δ�}, 	Λi ∈ Co{Δi�, Δi�}           (12) 
 

Theorem 1. For given positive scalars ℎ and s, the system (7) 
with the sampled-data controller (9) is stable, if there exist 

symmetric positive definite matrices P ∈ ℛ�;×�;, S ∈,ℛ ∈ ℛ�;×�;  any matrices X ∈ ℛ�;×�;	 symmetric matrices ^ ∈ ℛ;×;  and appropriate dimension matrix _  satisfying the 
following LMIs: 

 

uΞNv − 2O�^3�O�� + O�^3�ΛD8
vx� O�� + O�DyΛy^3�O�� −2OR^3�OR� + OR^3�ΛiDOQ� + OQDyΛiy^3�OR� (O� + sOQ)^3�Φ^3� + ^3�Φy^3�(O� + sOQ)� < 0  (13) 

 WℛN X̅∗ ℛ[\ ≥ 0.                                           (14) 
 

Further, the sampled-data controller gain matrix in (9) is given 

by: 

 0	 = 	_^3�.                                   (15) 

 

Proof. Consider the following Lyapunov function candidate:   	�(7) = 	∑ �v�vx�                                (16) 

 

where �� = 6}�(7)P6}(7), �� =	~ 6}�(�)S6}(�)�
�3� L�, 

�� = ℎ~ ~ 6"}�(�)ℛ6"}(�)�
���

�
3� L�. 

 

The time-derivative of the Lyapunov function �(7)  can be 
obtained as: 

 �"� = 6"}�(7)P6}(7) + 6}�(7)P6"}(7) = ��(t)Ξ��(7),      (17) 
 

where Ξ� = [O�	O�]P[OQ	OR]� + [OQ	OR]P[O�	O�]� , �"� = 6}�(7)S6}(7) − 6}�(7 − ℎ)S6}(7 − ℎ) = ��(t)Ξ��(7) (18) 
 

where Ξ� = [O�	O�]S[O�	O�]� − [O�	OT]S[O�	OT]� , �"� = ℎ�6"}�(7)ℛ6"}(7) − ℎ� 6"}�(�)ℛ6"}(�)L���3� ,	      (19) 
 

Since �ℛ X∗ ℛ� ≥ 0,  by employing Jensen’s inequality and the 
reciprocally convex combination technique [7], one can obtain: 

 

−ℎ~ 6"}�(�)ℛ6"}(�)L� ≤�
�3� >??

?@ ~ 6"}(�)L��
�3�(�)~ 6"}(�)L��3�(�)
�3� DEE

EF
�
�ℛ X∗ ℛ� 

�� 6"}(�)L���3�(�)� 6"}(�)L��3�(�)�3� �                         (20). 

 

Hence, from (19) and (20), we have 

 �"� ≤ ��(t)Ξ��(7),                             (21) 
 

where Ξ� = ℎ�[OQ	OR]ℛ[OQ	OR]� − [O� − O�		O� − O8		O� − O�	O8 − OT] ℛ[O� − O�		O� − O8		O� − O�	O8 − OT]� , 
 

From (11) and (10), for any symmetric matrices 	^ , the 
following equations are satisfied: 

 2n��e(7)�^3�[Λ�		 − ,		0		0		0		0		0		0	]�(7) = 0,            (22) 
 2n"��e(7)�^3�[	0		0		0		0		0		0		Λi�	 − ,	]�(7) = 0,            (23) 

 2[6�(7)^3� + s6" �(7)^3�[<		H		G0		0		0		0	 − ,			0]�(7) = ��(7)((O� + sOQ)^3�Φ^3� +^3�Φ�^3�(O� + sOQ)�)�(7) = 0,                                (24) 
 

An upper bound of the difference of �	(7)	is: 
 �" (7) ≤ ��(7)�∑ ΞNv − 2O�^3�O�� + O�^3�ΛD�vx� O�� + O�DyΛy^3�O��−2OR^3�OR� +OR^3�ΛiDOQ� + OQDyΛiy^3�OR�(O� + sOQ)^3�Φ^3� + ^3�Φy^3�(O� + sOQ)��	�(7)     

(25) 

 

Let us define 

 PN = Labc{^, ^}�P	Labc{^, ^} , SN = Labc{^, ^}�S	Labc{^, ^} , ℛN = Labc{^, ^, ^, ^}�ℛ	Labc{^, ^, ^, ^}, 	X� = Labc{^, ^}�X	Labc{^, ^}, 
 

then pre and post multiplying the matrix  Labc{^,…	, ^}�	and Labc{^, . . , ^} in (25) leads to LMI (13). This completes the 
proof. 

 
TABLE I 

PARAMETERS IN THE SOFC SYSTEM [6] 

Parameter Value Unit Representation _� 1279K Absolute temperature H� 96,485Cmol-1 Faraday’s constant :� 8.314Jmol-1K-1 Universal gas constant �� 0:9378 V Ideal standard potential �� 384 - Number of cells n series in the 0(  0.995× 103����	�3�<3� Constant, Kr = N0=4F0 0�� 8.32× 103����	�3�0�b3� Valve molar constant for hydrogen 0��  2.77× 103����	�3�0�b3� Valve molar constant for water 0 � 2.49× 103����	�3�0�b3� Valve molar constant for oxygen /�� 26.1 s Response time of hydrogen flow / � 2.91 s Response time of Oxygen flow /�3  1.145 Ratio of hydrogen to oxygen /�  5 s Time constant of the fuel processor + 0.126Ω Ohmic loss � 10 F Parallel Capacitance 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:9, No:8, 2015

778

 

 

 

 

Fig. 2 Simulation result (Stack voltage x_4 (t)) 

IV. SIMULATION RESULT 

Using the state transformation around the nominal operation 

point with !
∗ = 0.7023	����3�	 , ,-∗ = 300< , �*∗ = 240.7075� ,  p��∗ = 12.6623 ,  � �∗ = 12.6466   and Euler’s first order 
approximation with a sampling time 1 sec for the derivative, we 

obtain a sector bounded system (1) with the following matrices. 

 

< = 	 �−0.0383 0 0.0383 0.00060 −0.3436 0.3001 0.00270 0 −0.2000 00 0 0 −0.7937� , 
G = 	� 000.20000 �		, H =	 �−0.0128 −0.0064−0.0572 −0.02860 016.7151 8.3576 �	,  � =	 �1 0 0 00 1 0 0�		, 

n�6(�)� = 	 ���	(��(�)����
∗ 5�����∗ 5�� )

��	(��(�)����∗ 5�����∗ 5�� )�		, 
 (�) ∈ ¡�6.67 00 2.83� , �9.07 00 3.52�¢		.                      (26) 

 

It should be noted that lower and upper sector bounds of the 

nonlinear function vector n�6(7)� are obtained as [6.67	2.83]� 
and [9.07	3.52]� in 6� ∈ [0	0.1] . The initial condition is 6� =[0.0867	0.0777	0.0898	14.9727]� . Fig. 1 show that the proposed 
method with the case of only state feedback control law. This 

results show that the proposed method can be well applied to 

the set-point tracking. 

V.  CONCLUSION 

In this paper, we proposed a sampled-data control algorithm 

for SOFC systems using a sector bounded nonlinear model. A 

stabilization condition by using the augmented vector feedback 

is expressed in the form of a finite number of LMIs. The 

proposed control method was applied to the SOFC system 

which is expressed as simplified mathematical model. The 

effectiveness of the proposed method was verified by 

numerical simulations. 
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