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Abstract—This study investigates the effects of the lead angle 
and chip thickness variation on surface roughness during the 
machining of compacted graphite iron using ceramic cutting tools 
under dry cutting conditions. Analytical models were developed for 
predicting the surface roughness values of the specimens after the 
face milling process. Experimental data was collected and imported 
to the artificial neural network model. A multilayer perceptron model 
was used with the back propagation algorithm employing the input 
parameters of lead angle, cutting speed and feed rate in connection 
with chip thickness. Furthermore, analysis of variance was employed 
to determine the effects of the cutting parameters on surface 
roughness. Artificial neural network and regression analysis were 
used to predict surface roughness. The values thus predicted were 
compared with the collected experimental data, and the 
corresponding percentage error was computed. Analysis results 
revealed that the lead angle is the dominant factor affecting surface 
roughness. Experimental results indicated an improvement in the 
surface roughness value with decreasing lead angle value from 88° to 
45°. 
 
Keywords—CGI, milling, surface roughness, ANN, regression, 

modeling, analysis.  

I. INTRODUCTION 

OMPACTED Graphite Iron (CGI) is considered to be a 
potential alternative for flake graphite iron for 

manufacturing new generation high-power diesel engines. Use 
of CGI, which is characterized by higher strength and 
stiffness, allows an engine to perform at higher peak pressure 
with higher fuel efficiency and lower emission rate. Given 
these advantages, CGI is considered to be an important 
manufacturing material and is being widely used as an 
alternative for Grey Cast Iron (GCI) in the automotive 
industry for the production of several parts, including engine 
heads, diesel engine blocks, exhaust manifolds and brake 
discs. Additionally, this material facilitates higher pressure in 
the chamber, thereby leading to more efficient fuel 
combustion. However, CGI has poor machinability when 
compared with GCI, resulting in higher cutting tool wear and 
loss in productivity [1]-[5]. Recently, several studies have 
used neural networks for predicting and optimizing the cutting 
parameters during milling operations to obtain desired 
responses such as cutting force, surface roughness and tool 
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wear. For instance, Tsai et al. developed an artificial neural 
network (ANN)-based surface recognition system to predict 
the surface roughness of machined parts during the end 
milling process. Such an approach is expected to assure 
product quality and increase the production rate by predicting 
the surface finish parameters in real time. Experimental results 
show that the proposed ANN-based surface recognition model 
exhibits a high accuracy rate (96%–99%) for predicting 
surface roughness under a variety of combinations of cutting 
conditions [6]. Furthermore, Zain et al. presented an ANN-
based model for predicting surface roughness during the 
machining process. On the basis of the predictions, the 
recommended combination of cutting conditions to obtain the 
best surface roughness value is high speed with low feed rate 
and radial rake angle [7]. Alauddin et al. developed 
mathematical models for predicting the surface roughness 
using speed and feed. The surface roughness contours thus 
obtained could select a combination of parameters for 
realizing machining time reduction without increasing the 
surface roughness [8]. Benardos et al. presented a neural 
network model for predicting the surface roughness during 
CNC face milling. The proposed ANN-based method 
predicted the surface roughness with a mean squared error of 
1.86%. According to that study, for the given surface 
roughness, tool and work piece, it is necessary to determine 
the optimum cutting condition [9]. Bajic, Lela and Zivkovic 
examined the influences of various cutting parameters, 
including cutting speed, feed rate and depth of cut, on the 
surface roughness during face milling using ANNs. According 
to their study, the neural network model provides a better 
explanation of the observed physical system. Accordingly, the 
optimal cutting parameters were determined using the simplex 
optimization algorithm [10]. Munoz et al. [11] experimentally 
investigated the surface milling of A1 7075-T7351 and 
modelled the experimental results using ANNs. Their 
experiments have shown that there is a strong correlation 
between chip thickness and surface roughness. Chien and 
Chou developed a mathematical model for determining the 
machinability of type 304 stainless steel during an experiment. 
The surface roughness, cutting power and tool life was 
predicted to be 4.4%, 5.3% and 4.2%, respectively [12]. 
Sağlam applied and evaluated ANNs in his experiment to 
establish an observation system for a smart tool status on the 
basis of the results of cutting powers during face milling 
operations. The tool wear and surface roughness were 
predicted with a success rate of 77% and 79%, respectively 
[13]. Lo indicated that ANN-based models are highly effective 
in metal cutting applications. According to that study, factors 
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such as radius of the cutting tool edge, feed rate, cutting speed, 
heat and vibrations are the main parameters influencing 
surface roughness [14]. Öktem et al. established a 
mathematical model with ANNs to investigate the surface 
roughness values during the milling of type AISI 1040 steel in 
wet cutting with carbide tools [15]. Asiltürk et al. studied the 
effect of cutting parameters on surface roughness (Ra) during 
the machining of AISI 1040 hardened steel. Experimental 
results indicated that the feed rate is the most important 
parameter among the different parameters influencing surface 
roughness [16]. Kıvak determined the effects of the machining 
parameters on the surface roughness and flank wear by the 
analysis of variance (ANOVA). The analysis results showed 
that feed rate is the dominant factor affecting surface 
roughness, whereas flank wear is significantly influenced by 
cutting speed [17].  

Surface roughness essentially describes the surface 
geometry of the machined part. Controlling the surface 
roughness of any manufacturing process has become a critical 
factor because of the increased demands on the quality of the 
final product. Surface roughness is not only an important 
measure of the quality of a product but also influences the 
production cost significantly. The main objective of this study 
is to investigate the influence of lead angle variation and 
cutting conditions on surface roughness. To this end, 
experiments were performed under dry machining conditions 
and an ANN-based prediction model was developed to predict 
the effect of lead angle and maximum chip thickness on the 
surface roughness while machining CGI under various cutting 
parameters, such as cutting speed, feed rates and constant 
depth of cut.  

II. EXPERIMENTAL PROCEDURES 

A. Characteristics of the Work Pieces 

In this study, we used rectangular CGI blocks of dimension 
100×100×100 mm. This material was selected for the 
experimental research, considering the fact that it is being 
widely employed in the automotive industry for the production 
of engine heads, diesel engine blocks, exhaust manifolds and 
brake discs. Given its increased strength when compared with 
the traditional GCI, it allows an increase in the cylinder 
pressure, a better fuel economy and a higher power output. In 
the typical process, CGI blocks were mounted with M10 
screws on the dynamometer and were face milled by the down 
milling method (Fig. 1). Fig. 2 shows the microstructure of 
CGI used in the experiment. As is observed, the surface of the 
CGI has several individual worm-shaped particles, which are 
shorter and have a rounded edge. Additionally, the CGI has 
some spheroidal graphite particles. These particles provide 
superior mechanical properties to the CGI, and are responsible 
for increasing the strength and stiffness [4]. Table I. 
summarizes the chemical composition of the CGI specimen as 
obtained during the casting process in the factory. The 
mechanical properties of the CGI are listed in Table II. 

 

Fig. 1 Specimen for measuring cutting force [18] 
 

 

Fig. 2 Microstructure of CGI  
 

TABLE I 
CHEMICAL COMPOSITION OF CGI 

C Si Mn P S Cr Ni Mo 

3,82 1,804 0,337 0,031 0,015 0,074 0,013 0,002 

Cu Mg Sn Ti Al Zn Bi Fe 

0,879 0,014 0,092 0,0203 0,008 0,082 0,007 Bal. 

 
TABLE II 

MECHANICAL PROPERTIES OF CGI 

Ultimate Tensile 
Strength (MPa) 

%0.2 Yield 
Strength (MPa) 

Elongation 
(%) 

Typical 
Hardness, HV 

Impact 
test 

(Joule) 

502,7 284,3 1,8 280,0 8,6 

B. Machining Tool, Cutting Insert and Roughness 

Measurements 

The face milling operation was performed using a Johnford 
VMC550 model three-axis CNC milling machine tool under 
dry cutting conditions. A standard 63 mm tool holder with two 
cutting edges (insert) was used in the experiments. Sandvik 
coromant CC6090 quality Si3N4-based (Sialon) ceramic 
inserts with ISO code R245-12 T3 E 6090 were mounted on 
the tool holder. The average surface roughness (Ra) of the 
workpiece was measured on a MAHR-Perthometer M1 
portable surface roughness device. Every surface was 
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machined with a separate set of tools. The surface roughness 
was measured by machining the samples along 100 mm, and 
the average values were calculated by measuring the rate of 
surface roughness at 4 different points.  

C.  Cutting Parameters 

For the experimental study, the lead angle, cutting speed 
and maximum chip thickness were selected as variables. The 
three variables for maximum chip thickness, namely, 0.07, 
0.084 and 0.1008 were determined from the tool supplier 
catalogue. The feed rate fz was continuously changed in 
connection with the equation ℎ�� = �� × sin ��. Accordingly, 
48 different feed rates were used in the experiments. The feed 
rates were increased while reducing the lead angle. The 
cutting parameters used in the experiments are shown in Table 
III.  

 
TABLE III 

CUTTING PARAMETERS USED IN THE EXPERIMENTS 

Parameters Values 

Lead angles (Degree), Kr 45°,	60°,	75°, 88° 
Cutting speed (m/min), Vc 334,400, 460, 530 

Maximum chip thickness (mm), hex 0.07, 0.084, 0.1008 

Depth of cut (mm), ap 2.5 

Cutting width (mm), ae 40 
Tool holder diameter (mm), Dc 

Number of cutting edge, Zn 
63 
2 

III. MODELING OF SURFACE ROUGHNESS VALUE 

A. Estimation of Surface Roughness Value Using ANN 

The surface roughness was estimated using a feed-forward 
four-layered back propagation neural network, as shown in 
Fig. 3. A multilayer ANN model with back propagation was 
specifically chosen in this experiment because of its wide 
application and the use of the Levenberg–Marquardt 
algorithm. The network was constructed with four layers, 
including the input, output and hidden layers. The ANN with 
one hidden layer gave significantly high errors; hence, a two-
layer network was considered. The input neurons are cutting 
speed, various lead angles and chip thickness, whereas the 
output neuron is surface roughness (Ra). Pythia software was 
used for training this network, and the ANN was trained with 
the back propagation algorithm. The software randomly 
selected the weights of the network connections. The neural 
network was trained with 32 experimental data and was 
subsequently validated and tested with 16 experimental data. 
The prediction performance of the ANN model developed in 
the experimental study was specified in terms of the 
coefficient of determination (R2), root mean square error 
(RMSE) and mean absolute percentage error (MAPE). 

 

�� = 1 − �∑����������,���∑������,��� �            (1) 

 

� !" = #�1 $% & 'Ra*++,, − Ra,, '�-
./0 �               (2) 

 12" = #�1 $% & 3������������� 3-
./0 × 100�     (3) 

 
The Pythia software uses Fermi function as the transfer 

function. The input and output values are normalized in 
(−1,1). Table IV summarizes the maximum and minimum 
values of the cutting parameters used in the experiment for 
normalization. The Fermi transfer function can be measured 
using (4): 

 56�7 = 008�9:6;9<.>7              (4) 

 
The experimental results were trained with ANN and were 

investigated with the most appropriate network structures, 
different cycle and neuron counts. First, a network structure 
with the lowest deviation value was selected by automatically 
optimizing the software. After specifying the network 
structure, it was trained up to the smallest deviation value by 
changing the deviation count and training values of the 
software. Following these operations, a network structure 
comprising four layers and nine neurons was selected for the 
experiments.  

 
TABLE IV  

THE LIMIT VALUES FOR ANN SOFTWARE 

Inputs 

 Lead angle (κ@) Cutting speed (Vc) Table feed speed (Vf) 

Maximum 88 530 764 

Minumum 45 334 237 

 
To test the reliability of the network structure, the real 

values were compared with the results of the network 
structure. The results indicate no explicit error in the deviation 
rate. After this phase, the weight values in the neurons were 
imported into the Excel software. Following that, an analytical 
model was developed with these weight values so as to predict 
the average surface roughness value (Ra). 

 

 

Fig. 3 ANN structure in the LM algorithm with nine neurons  
 
ANNs consist of a number of elementary units called 

neurons. A neuron is a simple processor, which takes one or 
more input values and produces an output. Each input value is 
multiplied with the weight values connected with it. The 
weighted input values are added linearly to obtain the output 
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values. As shown in Fig. 3, the output values thus obtained are 
used as input values for other neurons. Equation (5) was 
acquired using the weight values of the neurons in the ANN 
network structure during the milling conditions. This equation 
can be used for predicting the surface roughness value (Ra) 
while milling the compacted graphite iron using the ceramic 
inserts. 

 5A6��7 = 008�9:69�,BCDEEF∗HDIJ,:<FFBB∗HEIJ,D�>D>>∗HC9<,>7       (5) 

 
The Fermi transfer function is expressed as 
 56.7 = 008�9:∗�K�9<,>�                        (6) 

 
TABLE V 

CONSTANTS USED IN (7) FROM NEURONS 1-5 

i 
Constants 

w1i w2i w3i 

1 -0.200544 -0.785645 -0.825014 

2 0.685859 -0.871897 1.432073 

3 -0.650129 -2.109688 0.680974 

4 0.695588 -0.437300 -1.744061 

5 0.634416 0.409598 -0.539687 

 
The Ei value was calculated using (7) for the neurons from 

N1 to N5. Here i represent the neuron numbers in the 
equation. The obtained weights are shown in Table V.  

 ". = L0. ∗ MN + L�. ∗ �� 	+	LP. ∗ MQ           (7) 
 
Similarly, the Ei value for the neurons fromN6 to N8 was 
calculated using (8). The obtained weights are shown in Table 
VI. 

 ". = L0. ∗ 50 +	L�. ∗ 5� +	LP. ∗ 5P +	LR. ∗ 5RS 	+	LT. ∗ 5T  (8) 
 

TABLE VI  
6-8 CONSTANTS USED IN (8) FROM NEURONS 6-8 

i 
Constants 

w1i w2i w3i w4i w5i 

6 1.63678 -1.68025 3.46102 1.20995 0.37378 

7 -0.93867 0.12453 0.11363 1.14585 0.41122 

8 0.32120 0.00415 0.93702 -2.15098 0.69684 

B. Estimation of Surface Roughness by Regression Analysis 

In this study, regression analysis was also used for 
modelling and analysing the several cutting variables, where 
there is relationship between the dependent and independent 
variables. The dependent variable is surface roughness (Ra), 
whereas lead angle (Kr), cutting speed (Vc) and maximum 
chip thickness (hex) are the independent variables. The linear 
regression model was generated under the main effects of 
control factors, and the coefficient of determination for this 
equation was calculated as	�� = 0.924. This result was 
realized under the confidence level of 95%. Hence, the 
predictive equations for the quadratic regression of surface 
roughness were calculated with factor interactions. 

 

�X = 0,0866371 + 0,00344224 × ]� − 0,0000879685 × MN +0,00023951 × MQ                       (9) 
 
The coefficient of determination for the quadratic equation 

was calculated as	�� = 0.95 and is given as follows: 
 �X = −0,244888 + 0,00604697 × ]� + 0,000326014 × MN +0,000990923 × MQ + 0,0000101646 × ]� × ]� −0,000000800118 × MN × MN − 0,00000054651 × MQ × MQ							(10) 
 
The equations show that the surface roughness value 

increases with increasing lead angle, cutting speed and 
maximum chip thickness. Among these cutting parameters, the 
lead angle (Kr) has the most dominant effect on the surface 
roughness. As the lead angle increases from 45° to 88°, there 
is an increase in the cutting tool vibration. This often leads to 
the formation of micro-cracks on the cutting insert, thereby 
contributing to an increase in the surface roughness value. 

IV. RESULTS AND DISCUSSIONS 

In the experiments, the surface roughness was affected by 
the cutter lead angle and maximum chip thickness. 
Experimental results indicate that the surface roughness value 
improves with decreasing lead angle from 88° to 45°. The 
highest surface roughness value of Ra = 0.47µm was obtained 
for the cutting parameters of ]� =	88°, Vc = 530 m/min and 
Vf = 540 mm/min. The best surface roughness value of Ra = 
0.26µm was obtained for ]�= 45°, Vc = 334 m/min and Vf = 
334 mm/min. The main effects of the control factors were 
evaluated using the variance analysis. Accordingly, the effects 
of the control factors on the surface roughness during the 
experiments are as follows: lead angle (Kr) 73.79%, feed rates 
(hex) 14.25%, cutting speed (Vc) 4.42% and product of 
cutting speed and feed rate (Vc×Vf) 2.19%. The results of the 
variance analysis, as shown in Table VII, indicate that the lead 
angle has the greatest effect on the surface roughness when 
machined under different lead angles, while the cutting speed 
has the least effect. The surface roughness value increased, in 
addition to the increase in feed rate value as a function of the 
maximum chip thickness (hex). The experimental results 
obtained in this study were realized in parallel to the related 
literature. With increase in the lead angle from 45° to 88° for a 
given chip thickness, the cutting tool vibration and micro-
cracks increased on the cutting edge during the cutting 
process. Consequently, there was an associated increase in the 
surface roughness value. After completing the ANN training 
and regression analysis, the ANN and regression analysis 
equations were tested using the experimental results. For this, 
the experimental results were graphically compared with the 
results obtained from the training network and regression 
analysis equation. The scatter diagrams of the predicted and 
measured values of the surface roughness values are shown in 
Fig. 5. The coefficients of determination R2 for ANN and 
regression analysis were found to be 0.9784 and 0.95, 
respectively. Fig. 6 shows the comparison of the predicted and 
measured values of the surface roughness values for a set of 
16 testing data after obtaining the mathematical equations 
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using ANN and regression analysis. As is observed, the 
predicted surface roughness values are very close to the 
measured values for all the cutting parameters. The prediction 

rate using ANN and regression analysis was found to be 
94.27% and 97.74%, respectively. 

 

 

Fig. 4 Effects of the cutting parameters on the surface roughness  
 

TABLE VII 
ANALYSIS OF VARIANCE (ANOVA)  

Source DF SS MS F P Effect rate (%) 

Kr 1 0.0568110 0.0010466 5.9774 0.022961 73.79% 

Vc 1 0.0034038 0.0000459 0.2623 0.613635 4.42% 

Vf 1 0.0109723 0.0012201 6.9684 0.014963 14.25% 

Kr*Vc 1 0.0000049 0.0000379 0.2162 0.646493 0.01% 

Kr*Vf 1 0.0000583 0.0001964 1.1218 0.301029 0.08% 

Vc*Vf 1 0.0016925 0.0000057 0.0328 0.858015 2.20% 

Kr*Kr 1 0.0000035 0.0000685 0.3911 0.538152 0 

Vc*Vc 1 0.0000445 0.0001571 0.8971 0.353845 0.06% 

Vf*Vf 1 0.0001448 0.0001448 0.8271 0.372978 0.19% 

Error 22 0.0038519 0.0001751   5.00% 

Total 31 0.0769875     
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Fig. 5 Comparison of training data result with the ANN model and 
regression model 
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Fig. 6 Comparison of test data with the prediction model
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V. CONCLUSIONS 

In this study, CGI was milled under various lead angles and 
cutting parameters using ceramic cutting inserts. The ANN 
was initially trained with 32 experimental data. Following 
that, the reliability of the ANN model was tested with 16 
experimental data under dry cutting conditions. Furthermore, 
the experimental results were evaluated using ANOVA. The 
following conclusions could be inferred from the results: 

There existed a strong correlation between the surface 
roughness value and lead angle in each trial of the experiment. 
Experimental results during the milling of CGI using ceramic 
inserts showed that the surface roughness values improve with 
decreasing lead angle. More specifically, on decreasing the 
lead angle from 88° to 45°, there is an increase in the feed rate 
and the volume of the removed chip. This situation, in general, 
has a negative impact on the surface roughness. Intriguingly, 
however, the surface roughness value improved at a smaller 
lead angle. With increasing lead angle from 45°to 88° for a 
given chip thickness, there is an increase in the cutting tool 
vibration. This often leads to the formation of micro-cracks on 
the cutting edge. As a result, the value of surface roughness 
increases correspondingly. For optimum surface roughness 
during the machining of CGI using ceramic inserts, it is 
recommended to perform the face milling operation at cutting 
speed within the range 334 to 400 m/min, lead angle within 
the range 45° to 60° and maximum chip thickness of 0.07 mm. 

The mathematical model indicated a good agreement 
between the experimental data and predicted values for 
surface roughness. According to the ANOVA results, the lead 
angle is the most significant parameter influencing the surface 
roughness, with a percentage contribution of 73.79%. 
According to the confirmation test results, the measured 
values are within the 95% confidence interval. The R2 values 
of the ANN and regression analysis for the confirmation data 
were calculated as 94.27% and 97.74%, respectively. These 
results indicate beyond ambiguity that the ANN-based model 
is reliable and accurate in successfully modelling the surface 
roughness during the face milling of CGI. 
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