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Abstract—The elastic properties and fracture of two-dimensional 
graphene were calculated purely from the atomic bonding (stretching 
and bending) based on molecular mechanics method. Considering the 
representative unit cell of graphene under various loading conditions, 
the deformations of carbon bonds and the variations of the interlayer 
distance could be realized numerically under the geometry constraints 
and minimum energy assumption. In elastic region, it was found that 
graphene was in-plane isotropic. Meanwhile, the in-plane deformation 
of the representative unit cell is not uniform along armchair direction 
due to the discrete and non-uniform distributions of the atoms. The 
fracture of graphene could be predicted using fracture criteria based on 
the critical bond length, over which the bond would break. It was 
noticed that the fracture behavior were directional dependent, which 
was consistent with molecular dynamics simulation results. 

 
Keywords—Energy minimization, fracture, graphene, molecular 

mechanics.  

I. INTRODUCTION 

RAPHENE is a one-atom-thick layer of graphite with 
hexagonal lattice structure, which attracted a lot of 

attention due to its excellent strength, flexibility and 
electrical/thermal conductivity [1]-[3]. Graphene can be 
obtained by micromechanical cleavage or repeatedly peeling 
with adhesive tape [4], [5]. Recently, graphene has been 
recognized as a promising novel material applicable in flexible 
displays, optical devices, chemical sensing, biosensors, 
ultra-capacitors, super-small transistors, and flash-like memory 
[2], [4], [6], [7]. For advance application, it is important to have 
some understanding about mechanical properties of graphene 
or graphite so that further development would become feasible. 

Some experimental attempts [8]-[10] have been performed to 
characterize the properties of graphene. However, it still 
remains a challenge for experimentalists to carry out test and 
analyze experimental data at such small size-scale. Both 
theoretical [11], [12] and numerical methods, e.g., 
atomistic-continuum modelling [13], [14], first principle 
method [15], and molecular dynamics simulation [16]-[19], 
have been employed to investigate the elastic properties of 
graphene or graphite. Shokrieh and Rafiee [11] presented 
analytical formulations to predict Young’s moduli of graphene 
sheets using a linkage between lattice molecular structure and 
equivalent discrete frame structure proposed by Li and Chou 
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[13]. Hwu and Yeh [12] derived explicit closed-form 
expressions of mechanical properties for graphene and carbon 
nanotubes on the basis of force constants of carbon covalent 
bonding. Li and Chou [13] proposed a structural mechanics 
method combined with molecular mechanics, which replaced 
the C-C bonds by an equivalent beam based on deformation 
energy equivalence. Contrary to single bond equivalent 
concept, [14] developed the stick-spiral models based on the 
energy equivalence between the basic cell of the graphene 
atomic structure and found that their model could provide more 
accurate elastic properties of graphene, especially the Poisson 
ratio, than the existing molecular structural mechanics models.  

Molecular dynamics method has become a widely used 
atomic-scale simulation scheme with obvious advantage of 
dealing with complicated and relatively large atom systems. 
Several molecular dynamics simulations were implemented to 
examine the thickness and chirality effects on mechanical 
properties of graphene/graphite. Mortazavi et al. [18] studied 
the mechanical response of few-layer graphene, consisting of 
2-7 atomic planes and bulk graphite, and found that the bonding 
strength between neighboring layers improved by increasing of 
the number of graphene layers, which would reduce the elastic 
modulus and ultimate strength. Ni et al. [19] investigated both 
the elastic and fracture behaviors of finite size graphene sheet 
along different directions and they observed that the fracture 
strain and the rupture process was loading direction dependent. 
Unlike the theoretical derivations and structure mechanics 
modeling, molecular dynamics simulations could directly deal 
with nonlinear interatomic interactions and large deformation 
condition. However, the computational efficiency of molecular 
dynamics method still restricts the simulated system size. 

In this study, we proposed to examine the mechanical 
properties of infinite graphene sheet under small and large 
deformation based on molecular mechanics method. Instead of 
replacing the interatomic bonding with energy equivalent 
continuum structure, the deformation energy of the graphene 
under loading would be directly related to the bond changes. 
Considering the representative unit cell, the changes of bond 
lengths and angles under external loadings could be realized 
numerically under the geometry relations and minimum energy 
assumption. Various loadings, e.g., uniaxial, biaxial, simple 
tension, and pure shear, could be applied on the representative 
unit cell to extract the elastic properties of graphene at small 
deformation. Moreover, the fracture behavior of graphene 
along different loading directions would be studied as well.  
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II. THEORETICAL MODELING 

The graphene is consisted by carbon hexagonal honeycomb 
lattice structure as shown in Fig. 1. From the viewpoint of 
molecular mechanics, the carbon atoms are taken as mass 
points and the interaction between atoms could be described by 
force fields. The interactions energy between atoms could be 
written as: 

    � = �� + �� +�� + �� +��	
 + ���    (1) 
 

where �� , �� , �� , and ��  are bonded energies of stretching, 
angle, inversion, and torsion, respectively; �
��	and ���  are 
energies of non-bonded van der Waals interaction and 
electrostatic interaction. Regarding the in-plan loading of 
graphene, the energies of bond inversion and torsion are 
negligible. Moreover, the non-bonded interactions, i.e., van der 
Waals interaction and electrostatic interaction, have less 
contribution on a covalent system and will be neglected in the 
graphene sheet as well. Hence, the total interatomic potential 
energy is mainly contributed by bond stretching and angle 
variation for graphene, which can be described by spring 
models as: 
 

� = �
�∑���∆��� + �

�∑���∆���      (2) 

 

where ∆�  and ∆�  are the changes of bond length and bond 
angle from the equilibrium; ��  and ��  are the corresponding 
force constants of bond stretching and angle variation caused 
by C-C bonding.  
 

 

Fig. 1 The schematic illustration of 2D graphene 
 
First consider an infinite graphene sheet under in-plane 

loading, it is obvious that every hexagonal lattice would deform 
in the same way. Hence, we could study the deformation of the 
representative unit cell as shown in Fig. 2. At equilibrium, the 
equilibrated C-C bond length, � , and bond angle, � , of the 

graphene are 1.42 Å and ���, respectively; the lengths, �� and 

� , of the representative unit cell are √3�  and 2� . We will 
consider two types of in-plane loadings, i.e., biaxial and shear. 
Assume the graphene is sustaining biaxial loading, $� and $ , as 
shown in Fig. 2 (b), the deformation of the representative unit 
cell could be described by two bond lengths, �� 	and � , and 

two bond angles, % and &, due to symmetry and periodicity. 
The angle between �� and �  is denoted as % and that between 

�� and �  is named as &. There are three geometry constraints 
needed to be satisfied.  
(1) Angle relation: 

 2α + β = 2π           (3) 
 

(2) Length condition along y -direction: 

 

� + ∆� = 2� + 2 *��+,- .� − 0
�1    (4) 

 

(3) Length condition along x -direction: 
 ��� + ∆���� = 2��� − 2���+,-&     (5) 

 

where ∆��,  is the unit cell length variation along x- and 

y-directions under biaxial strains, $�  and $ . The total 
deformation energy of the unit cell caused by the biaxial 
loading can be expressed as: 
 � = 4 × �

���∆��� + 2 × �
���∆� � + 8 × �

���∆%� + 4 × �
���∆&�(6) 

 ∆��, = ��, − �                (7) 
 

  ∆α�&� = α�&� − �
��        (8) 

 

where ∆��,  and ∆%�&� are bond length and angle changes from 
the equilibrium values. Here in this research, it is assumed the 

force constants ��	=	6.517×10-18 J-Å-2 and ��	=	8.754×10-19 J. 
[20] At equilibrium, the total deformation energy of the unit 
cell is zero. The deformation of the representative unit cell 
could be described by six unknowns, i.e., ∆��, ∆� , ��, � , α 

and &. Given the biaxial loading strains, $� and $ , combining 
with three geometry constraint conditions, it is still required to 
have one more equation in order to realize the deformation of 
the unit cell. It is assumed that the changes of bond lengths and 
angles will make the total deformation energy of the unit cell 
minimum. Hence, the elastic properties of the graphene could 
be calculated based on small loading strains and deformation 
energy density. Besides, it is also easy to figure out the 
deformation of the graphene under uniaxial loading (given $�, 
zero $ ; given $ , zero $�), which is a special case for in-plane 

biaxial loading. As for simple tension loading (given $�, zero 6 ; given $ , zero 6�), either ∆�� or ∆�  is given. Combined 
with three geometry constraint conditions, we need to 
determine two unknowns based on minimum energy 
assumption. Nelder-Mead multidimensional unconstrained 
minimization method is adopted to find these two parameters 
that would minimize the total deformation energy of the unit 
cell. Thus, the deformation of the graphene under simple 
tension loading could be determined.   

Similarly for pure shear in-plane loading, 7� , as shown in 
Fig. 3 (a), the deformation of the representative unite could be 
described by three bond lengths, ���, ���, �  and three bond 

angles, %�, %�, &. Since it is pure shear loading, the side lengths 
of the unit cell will remain the same. However, the 
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deformations of the bonds need to satisfy some geometry 
constraints under the limitation of periodic and symmetry 
conditions. These constraints are:  
(1) Length condition  

 �
� � +,-7 = ��+,-�� + � +,-��     (9) 

 �
� � -897 = ��-89�� + � -89��    (10) 

 
(2) Bond length conditions 

The geometry relations of bond length, ��� and ���, can be 
generated by using the law of cosines applied to the angle ∠;<=  and ∠;′<=  of the triangles ∆;<=  and ∆;′<=  as 
shown in Fig. 3 (b). 

  

���� = ��� + ?@A� B� − 2�� ?@A� B +,- ?C� + ��B   (11) 

 

���� = ��� + ?@A� B� − 2�� ?@A� B +,- ?C� − ��B   (12) 

 
(3) Bond angle conditions 

The geometry relations for bond angles, %�, %� and &, can be 
expressed using the law of cosines applied to the angle ∠;=<, ∠;′=< and ∠;=;′ of the triangles ∆;<=, ∆;′<=, ∆;=;′ 

 

?@A� B� = ���� + ��� − 2�����cos	�� − %� − ��� − ����    (13) 

 

?@A� B� = ���� + ��� − 2�����cos	�� − %� − ��� − ����    (14) 

��� = ���� + ���� − 2������+,-& 
 

The total deformation energy caused by pure shear loading due 
to the changes of the bond lengths and bond angles in the unit 
cell can be expressed as: 
 

� = 2 × 12��∆���� + 2 × 12��∆���� + 2 × 12��∆� � 

+4× �
���∆%�� + 4 × �

���∆%�� + 4 × �
���∆&�	   (15) 

 

 ∆���,�� = ���,�� − �       (16) 
 ∆%�,� = %�,� − �

��        (17) 

 ∆& = & − �
��          (18) 

 
The number of variables used for 2D shearing model is ten 

(�� , �� , �� , ���、��� , � , %� , %� , &  and 7) in the unit cell. 

Given the shear loading strains, 7 , combining with seven 
geometry constraint conditions, we could reduce the number of 
unknowns to two in order to realize the deformation of the unit 
cell. Nelder-Mead multidimensional unconstrained 
minimization method is adopted to find these two parameters 
that would minimize the total deformation energy of the unit 
cell. Consequently, the shear properties of the graphene could 
be calculated based on small loading strains and deformation 
energy density.  

The deformation of the representative unit cell under either 
biaxial or shear loading could be realized irrespective of small 
or large strain. Hence, the fracture strain could be predicted 
under the critical bond length assumption as fracture criteria. It 
is assumed that the bond would break when the bond length 
reaches 1.83 Å [19].  

 

 (a) 

 

(b) 

 

Fig. 2 The schematic illustrations of graphene (a) at equilibrium and (b) 
under biaxial loading (The representative unit cell is indicated by red 

dash line) 

III. RESULTS AND DISCUSSION 

The displacements of atoms inside the representative unit 
cell of two-dimensional graphene were calculated purely from 
the atomic bonding (stretching and bending) and non-bonding 
(van der Waal) energies using molecular mechanics method. 
Various loading conditions were applied to extract the elastic 
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properties of graphene at small deformation and examine their 
fracture behaviors at larger loading.  

 

 

 

 (a) 

 

 
(b) 

Fig. 3 The schematic illustrations of graphene under pure shear. (a) 
The unit cell and (b) the top half of the unit cell (The representative 

unit cell is indicated by red dash line) 
 

The strain energy density of the graphene under various 
loading conditions can be calculated based on minimum energy 
assumption as: 

 H = I
@A@J	K           (19) 

 

where �L is the thickness of graphene and taken as 3.4 Å. Since 
graphene is a single layer material, the elastic stiffness matrix 
can be simplified as: 
 

M 6�6 6� N = OP�� P�� P�QP�� P�� P�QP�Q P�Q PQQR M
$�$ 7� N       (20) 

 
The relation between strain energy density and strains can be 
expressed as: 
  H = S6��$� + S6 �$ + S6� �7�      (21) 

 
The elastic constants of graphene can be calculated from 
various in-plane loadings. Take uniaxial loading in x direction 
(given $�, zero $ , 7� ) as an example, the strain energy density 

can be written as H = �
�P��$�� . Fig. 4 illustrates the relation 

between strain energy density of the graphene and applied 
loading strain under uniaxial and simple tension loadings along 
both in-plane (x and y) directions. It is clear to observe that 
strain energy density, H , is proportional to $�  at small 
deformation (strain < 0.001) and the graphene is directional 
dependent at larger strain. Hence, the stiffness matrix of the 
graphene could be calculated under various small strain loading 
conditions based on molecular mechanics as: 
  

TPU = O 870.4 236.7 0870.4 0�-Z[[� 317.2R	(GPa) 

 
The elastic constants are the same along both in-plane 
directions. If simple tension (given $�, zero 6 , 7� ) is applied 
to the unit cell, Young’s modulus of the graphene could be 

calculated from strain energy density, H = �
�\�$�� , and 

Poisson’s ratio relating to transverse contraction could be 
figured out from the deformation of the unit cell (∆��, ∆� ). It 

is found that the Young’s moduli, \� , \ , and Poisson’s ratios, 
� , 
 �, of the graphene are 805.6 GPa and 0.27, respectively. 

It is noticed that the shear modulus, PQQ, Young’s modulus and 

Poisson’s ratio satisfy the relation PQQ = ]
���^��, which indicates 

that the graphene is in-plane isotropic. Our calculated Young’s 
moduli and Poisson’s ratios are consistent with the values based 
on the closed form solution [12] and stick-spiral model [14] 
while adopting the same set of force constants. 

Since the deformation of the graphene under loading could 
be determined under minimum energy assumption, it is 
interesting to examine the strain distribution inside the unit cell. 
The atomic arrangement in the unit cell is discrete and not 
symmetric in y direction. Hence, the unit cell could be divided 
into two zones based on geometry similarity as shown in Fig. 5 
(a). The normal and shear strain at each zone are defined 
following the conventional definitions: 
 

$ ��� = �0A _`abc 	dec0�ec0 , $ ��� = �0Jd0�0 , 7� ��� = ��,  7� ��� = ��.  (22) 

 
Figs. 5 (b) and (c) show the strain distributions of these two 
zones under simple tension loading along y direction and pure 
shear. It is obvious to notice that the strain along y direction is 
not uniform inside the unit cell and nonlinear when the applied 
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strain is large. Zone 1 is softer under simple tension but stiffer 
under shear loading as compared to zone 2. 

 

 
(a) 

 
 (b)  

Fig. 4 The relations between strain energy densities and applied strains 
under (a) uniaxial and (b) simple tension loading (Dash line indicates 

loading along x direction; solid line represents tension along y 
direction)  

 
The fracture strain for graphene can be estimated based on 

fracture criteria of critical bond length, at which the bond will 

tend to break. The critical bond length is assumed as 1.83 f. 
[19] Here, we only considered the graphene fracture strain 
under simple tension along two in-plane directions, i.e., 
x(armchair) and y(zigzag).  
 

 
(a) 

 
 

(b) 

 
 

(c) 

Fig. 5 (a) The illustration of the divided zones based on geometry 
similarity. The strain distributions at two zones under (b) simple 

tension loading along y direction and (c) pure shear strain 
 
The bond lengths of graphene subjected to simple tension 

loading could be evaluated based on minimum energy 
assumption and the bond length changes (∆�� , 	∆� �  under 
different strains are shown in Fig. 6. The dotted line indicates 
the critical bond length change, from which the fracture strain 

10
−3

10
−2

10
−1

4.34

4.35

4.36

4.37

4.38

4.39
x 10

11

10
−3

10
−2

10
−1

4.02

4.03

4.04

4.05

4.06

4.07

4.08
x 10

11

10
−3

10
−2

10
−1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 

 

zone 1

zone 2

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

θ
1

θ
2

N
or

m
al

 s
tr

ai
n 

S
he

ar
 s

tr
ai

n 

7	

$ 	

zone 1 

zone 1 

zone 2 

zone 2 

2
ε

u
 

$	

2
ε

u
 

$	



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:9, No:7, 2015

1266

 

 

could be determined. It is also noticed that one of the 
bonds(� �	almost remain the same as the equilibrium bond 

length and ��  bond would break first while loading along 
armchair edge, i.e. x direction. The �  bond would reach 

critical bond length faster when loading along zigzag edge. 
Moreover, the fracture strains are 0.43 and 0.38 while loading 
along armchair and zigzag edges of graphene. This trend is 
consistent with molecular dynamics simulation results [19]. 
The fracture behavior of graphene is loading direction 
dependent while contrasting to the elastic behavior. Moreover, 
it is worth to point out that the estimation of fracture strain is 
not limited to simple tension loading. Similar prediction on 
fracture strain based on critical bond length could be applied to 
various loading conditions, e.g. shear, biaxial and combined 
loadings.     

 
(a)  

 
 (b) 

Fig. 6 The bond length changes of graphene under simple tension 
loading along (a) armchair and (b) zigzag edges 

IV. CONCLUSIONS 

In this study, the representative unit cell of 2D graphene was 
considered and the deformation of the unit cell under various 
loading conditions, e.g., in-plane/out-of-plane, biaxial/shear, 
could be realized based on molecular mechanics. In molecular 
mechanics, the interaction between carbon atoms could be 
described by force fields. It is assumed that the deformation of 
the unit cell needs to satisfy the geometry constraints and 

minimum energy requirement. The elastic properties of 
graphene could be calculated from the strain energy density of 
the unit cell at small deformation (strain < 0.001). It is found in 
elastic region that graphene is in-plane isotropic. When the 
loading strain is larger, it is noticed that strain is not uniform 
and nonlinear inside the unit cell. Zone 1 is softer under 
uniaxial tension but stiffer under shear loading as compared to 
zone 2. Adopting fracture criteria based on critical bond length, 
it is predicted that the fracture strain along zigzag edge is lower 
than that along armchair edge of graphene, which is consistent 
with molecular dynamics simulation results. It is concluded that 
the fracture behavior of graphene is loading direction 
dependent contrasting to the elastic behavior. 
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