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Computational Simulations on Stability of Model
Predictive Control for Linear Discrete-time

Stochastic Systems
Tomoaki Hashimoto

Abstract—Model predictive control is a kind of optimal feedback
control in which control performance over a finite future is optimized
with a performance index that has a moving initial time and a moving
terminal time. This paper examines the stability of model predictive
control for linear discrete-time systems with additive stochastic
disturbances. A sufficient condition for the stability of the closed-loop
system with model predictive control is derived by means of a linear
matrix inequality. The objective of this paper is to show the results
of computational simulations in order to verify the effectiveness of
the obtained stability condition.
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I. INTRODUCTION

MODEL predictive control (MPC) is a well-established
control method in which the current control input is

obtained by solving a finite horizon open-loop optimal control
problem using the current state of the system as the initial
state. This procedure is repeated at each sampling instant.
Thus, MPC is a kind of optimal feedback control in which
the control performance over a finite future is optimized
and its performance index has a moving initial time and a
moving terminal time [1]. MPC is also known as receding
horizon control and it is one of the most successful control
methodologies because it enables control performance to be
optimized while taking into account constraints on state and
control variables [2]–[9].
Recently, robust MPC methods against uncertain

disturbances attract much attention in this research field.
The design methods of robust MPC can be classified into
deterministic and stochastic approaches. In the deterministic
approach, most studies are based on the min-max approach,
where a performance index is minimized over the worst
possible disturbance scenario [10]–[14]. However, min-max
approaches are often computationally demanding, and the
control performance is often too conservative because no
statistical properties of the disturbance are taken into account.
The other approach is addressed by stochastic MPC

where expected values of performance indices, probabilistic
constraints and convergence in probability are considered
by exploiting the statistical information on the disturbance
[15]–[20]. Although the aforementioned papers [15]–[20] have
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achieved tremendous progress in dealing with probabilistic
constraints of the stochastic MPC, there are several
restrictions on the probability distributions of stochastic
disturbances such as the normal (Gaussian) distribution,
known distribution, finite-support and time-invariance. On
the other hand, the methods proposed in [21], [22] enable
us to address arbitrarily unknown probability distributions
including non-Gaussian, infinitely-supported and time-variant
distributions. The Chebyshev’s inequality was applied in [21],
[22] to transform probabilistic constraints on the state variables
into deterministic constraints on the control inputs. Moreover,
a sufficient condition for the stability of the closed-loop system
was provided in [22]. However, the validity of the obtained
stability condition has not yet been confirmed. Therefore,
the objective of this paper is to derive a modified sufficient
condition for the stability of the closed-loop system with
MPC. Moreover, in this paper, the results of computational
simulations are provided in order to verify the effectiveness
of the obtained stability condition.
This paper is organized as follows. In section II, we

introduce some notations and define the system model. In
section III, we provide some preliminary results that are useful
to construct the main results. The stochastic MPC problem
is formulated in section IV and it is solved in section V.
The stability of stochastic MPC is discussed in section VI.
In section VII, we provide an illustrative example to verify
the effectiveness of the obtained stability condition. Finally,
some concluding remarks are given in section VIII.

II. NOTATION AND SYSTEM MODEL

Let R and N denote the sets of real numbers and natural
numbers, respectively. Let R+ denote the set of nonnegative
real numbers. For a matrix A, the transpose and the trace
of A is denoted by A′ and trA, respectively. For matrices
A = {ai,j} and B = {bi,j}, let the inequalities between A and
B such as A > B and A ≥ B indicate that they are satisfied
componentwisely, i.e., ai,j > bi,j and ai,j ≥ bi,j hold for all i
and j, respectively. Likewise, let each notation for the absolute
value |A|, the square root √A and the multiplication A ⊗ B
indicate that it holds componentwisely, i.e., |A| = {|ai,j |},√

A =
{√

ai,j

}
and A ⊗ B = {ai,j × bi,j} for all i and j.

Let A � 0 indicate that A is a positive definite matrix, i.e.,
x′Ax > 0 for any x �= 0. For a vector x, let the norms ‖x‖
and ‖x‖A be defined by ‖x‖ := x′x and ‖x‖A := x′Ax,
respectively, where A � 0.
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A function α : R+ → R+ is said to belong to class K if
it is continuous, strictly increasing and α(0) = 0. A function
α : R+ → R+ is said to belong to class K∞ if α ∈ K and
lim

s→∞α(s) = ∞.
Let the triple (Ω,F ,P) denote a probability space, where

Ω ⊆ R is the sampling space, F is the σ-algebra and P
is the probability measure [23]. Ω is non-empty and is not
necessarily finite. P(E) denotes the probability that the event
E occurs. If P(E) = 1 we say that E occurs almost surely.
For a random variable z : Ω → R defined on (Ω,F ,P), let
the expected value and the variance of z be denoted by E(z)
and V(z), respectively. For a random vector z = [z1, · · · , zn]′

whose each component is a random variable zi : Ω → R (i =
1, · · · , n) defined on the same probability space (Ω,F ,P),
we also adopt the same notation E(z) and V(z) to denote
E(z) = [E(z1), · · · , E(zn)]′ and V(z) = [V(z1), · · · ,V(zn)]′

for notational simplicity. Furthermore, a covariance matrix
Cv(z) is defined by Cv(z) := E [{z − E(z)}{z − E(z)}′].
Throughout this paper, we consider the following linear

discrete-time system with stochastic disturbances:

x(t + 1) = Ax(t) + Bu(t) + Cw(t), (1)

where t ∈ N is the time step, x(t) : N → R
n is the state,

u(t) : N → R
m is the control input and w(t) : N → R

� is
the unknown stochastic disturbance. More precisely, for each
component wi : N × Ω → R of w, the random sequence
{wi(t) : t ∈ N} is a collection of random variables on the
same probability space (Ω,F ,P) equipped with a filtration
{Ft : t ∈ N} [23]. The system coefficients A ∈ R

n×n, B ∈
R

n×m, C ∈ R
n×� are all known constant matrices. The pair

(A, B) is assumed to be controllable. We also assume that
the initial state x(0) is given and all components of the state
x(t) are deterministically observable. Thus, we suppose that
E(x(t)) = x(t) and V(x(t)) = 0 at the present time t.
Next, we introduce some assumptions on the properties of

the stochastic disturbances.
Assumption 1: wi(t) and wj(t) are independent each other

for all i �= j and t ∈ N. Also, wi(t) and wj(k) are independent
each other for all t �= k and j ∈ {1, · · · , �}.
Assumption 1 implies that all random variables wi(t) for i ∈
{1, · · · , �} and t ∈ N are independent one another.
Assumption 2: E(w(t)) and V(w(t)) are assumed to be

known for every time t.
Note that the probability distributions of the random

variables wi are not necessarily assumed to be known. In this
study, the assumption on known probability distributions is
relaxed as arbitrarily unknown probability distributions.
Assumption 3: There exists a positive real constant δ such

that
‖CE(w(t))‖A ≤ δ ‖E(x(t))‖A (2)

is satisfied for all A � 0 and t ∈ N.
Note that E(w(t)) is assumed to be bounded, but w(t) itself
may be unbounded. Assumption 3 is introduced to discuss the
stability at the origin of the averaged system for (1).
Definition 1: System (1) is said to be almost surely

asymptotically stable in the mean if the following condition is

satisfied:
P

(
lim

t→∞ E(x(t)) = 0
)

= 1. (3)

III. PRELIMINARIES
In this section, we provide some preliminary results that are

useful to derive the main results. The following lemma is well
known as Lyapunov stability theory.
Lemma 1 ([24]): Consider a system x(t + 1) = f(x(t)),

where x(t) : N → R
n, f(x(t)) : R

n → R
n and f(0) = 0.

Suppose that there exist a Lyapunov function V (x) : R
n →

R+, class K∞ functions α1, α2 and a positive definite function
α3 satisfying all the following conditions:

V (x) ≥ α1 (‖x‖)
V (x) ≤ α2 (‖x‖)
V (f(x)) − V (x) ≤ −α3 (‖x‖)

Then, the origin x = 0 is asymptotically stable.
The equivalence shown below is known as Schur complement.
Lemma 2: For given block matrices A, B and C, the

followings are equivalent.[
A B
B′ C

]
� 0

⇔ C � 0, A − B′C−1B � 0

The following lemmas are fundamental properties of the
matrix theory.
Lemma 3: For any A � 0 ∈ R

n×n and b, c ∈ R
n,

±2b′Ac ≤ b′Ab + c′Ac.

Lemma 4: For any nonsingular matrix A, (A′)−1 = (A−1)′

and A′A � 0 hold true. For any positive definite matrix A, it
is true that A−1 � 0 and there exists B such that A = B′B.

IV. PROBLEM STATEMENT
In this section, we formulate the stochastic MPC problem

of system (1). The control input at each time t is determined
so as to minimize the performance index given by

J := φ[x(t + N)] +
t+N−1∑

k=t

L[x(k), u(k)]. (4a)

Therein, N ∈ N denotes the length of prediction horizon. φ
and L are defined by

φ := E [x(t + N)′Px(t + N)], (4b)
L := E [x(k)′Qx(k)] + u(k)′Ru(k), (4c)

where P , Q and R are positive definite constant matrices.
φ ∈ R+ is the terminal cost function and L ∈ R+ is the stage
cost function over the prediction horizon.
For notational convenience, let X ∈ R

nN , U ∈ R
mN ,W ∈

R
�N , A ∈ R

nN×n, B ∈ R
nN×mN , C ∈ R

nN×�N , Q ∈
R

nN×nN and R ∈ R
mN×mN be defined by

X(t) :=

⎡
⎢⎣

x(t + 1)
...

x(t + N)

⎤
⎥⎦ , U(t) :=

⎡
⎢⎣

u(t)
...

u(t + N − 1)

⎤
⎥⎦ ,
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W(t) :=

⎡
⎢⎣

w(t)
...

w(t + N − 1)

⎤
⎥⎦ , A :=

⎡
⎢⎢⎢⎣

A
A2

...
AN

⎤
⎥⎥⎥⎦ ,

B :=

⎡
⎢⎢⎢⎢⎣

B 0 · · · 0

AB B
. . .

...
...

. . . . . . 0
AN−1B AN−2B · · · B

⎤
⎥⎥⎥⎥⎦ ,

C :=

⎡
⎢⎢⎢⎢⎣

C 0 · · · 0

AC C
. . .

...
...

. . . . . . 0
AN−1C AN−2C · · · C

⎤
⎥⎥⎥⎥⎦ ,

Q :=

⎡
⎢⎢⎢⎢⎣

Q 0 · · · 0

0
. . . . . .

...
...

. . . Q 0
0 · · · 0 P

⎤
⎥⎥⎥⎥⎦ , R :=

⎡
⎢⎣

R 0 0

0
. . . 0

0 0 R

⎤
⎥⎦ .

Using the above notation, the performance index in (4) can be
rewritten as follows:

J [x(t),X(t),U(t)] = E [x(t)′Qx(t)]
+ E [X(t)′QX(t)] + U(t)′RU(t), (5)

Here, note that system (1) over the prediction horizon can be
rewritten as

X(t) = Ax(t) + BU(t) + CW(t). (6)

Now, the optimal control problem can be formulated as the
minimization problem of (5) subject to constraint (6) for given
x(t), Q and R.

V. STOCHASTIC MPC

In this section, we provide a method for solving the
stochastic MPC problem discussed in the previous section.
From (6), E(X(t)) and V(X(t)) are given by

E(X(t)) = Ax(t) + BU(t) + CE(W(t)), (7a)
V(X(t)) = C ⊗ CV(W(t)). (7b)

In the above, we apply E(x(t)) = x(t) because the present
state x(t) is a deterministic vector. Moreover, it follows from
(5) that

J = x(t)′Qx(t) + U(t)′RU(t)
tr[QCv(X(t))] + E(X(t))′QE(X(t)). (8)

It is worth noting that the covariance matrix Cv(X(t)) is
independent of U(t) as shown below.

Cv(X(t)) = E [{X(t) − E(X(t))}{X(t) − E(X(t))}′]
= E [{CW(t) − CE(W(t))}{CW(t) − CE(W(t))}′]

Substituting (7a) into (8) and neglecting the terms that don’t
contain U(t), we have

min
U(t)

J [x(t),X(t),U(t)] = (9)

min
U(t)

{
U′(t) (B′QB + R)U(t)

+2 (Ax(t) + CE(W(t)))′ QBU(t)

}
.

Note that the minimization problem of J has been reduced
to the quadratic programming with respect to U that can be
solved using a conventional algorithm [25].

VI. STABILITY OF STOCHASTIC MPC

In this section, we study the stability of the closed-loop
system with the stochastic MPC. We employ here the
Lyapunov stability theory to derive a sufficient condition
for the asymptotic stability in the mean of the stochastic
MPC system. It is known that there is a restriction on the
choice of a performance index in order to guarantee the
stability of the closed-loop system with MPC [24]. More
precisely, the terminal cost function should be chosen as a
Lyapunov function satisfying (10). Therefore, we need to
select a performance index that is appropriate for stability
analysis. Hence, in the subsequent discussion, we consider the
cost functions φ and L as follows:

φ[E(x(t + N))] = E(x(t + N))′PE(x(t + N)),
L[E(x(k)), u(k)] = E(x(k))′QE(x(k)) + u(k)′Ru(k)

Note that the minimization problem of the above cost functions
can be reduced to the same minimization problem in (9).
Therefore, the stability of MPC system with performance
index (4) is equivalent to the stability of MPC system with
the above performance index.
First, we consider the existence of the control input u(t) =

KE(x(t)) such that the following inequality holds, where K ∈
R

m×n is a constant matrix.

φ[E(x(t + 1))] − φ[E(x(t))] ≤ −L[E(x(t)), u(t)] (10)

Recall that P , Q and R are weighting matrices introduced
in (4). Let Z and G be matrices such that Z = P−1 and
G = KZ.
The following lemma plays an important role to establish

the stability criteria for the closed-loop system with the
stochastic MPC.
Lemma 5: Inequality (10) is satisfied if there exist Z and

G such that the following linear matrix inequality (LMI) holds
for given Q, R, δ:⎡

⎢⎢⎣
(1 − 2δ)Z ZA′ + G′B′ ZQ G′R
AZ + BG Z

2 0 0
QZ 0 Q 0
RG 0 0 R

⎤
⎥⎥⎦ � 0. (11)

Proof: It is straightforward that

φ[E(x(t + 1))] − φ[E(x(t))] = E(w(t))′ {C ′PC} E(w(t))
+ E(x(t))′ {(A + BK)′P (A + BK) − P} E(x(t))
+ 2E(x(t))′(A + BK)′PCE(w(t)). (12)
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Applying Lemma 3 to the last term in the right-hand side of
(12) yields

φ[E(x(t + 1))] − φ[E(x(t))] ≤ 2E(w(t))′ {C ′PC} E(w(t))
+ E(x(t))′ {2(A + BK)′P (A + BK) − P} E(x(t)). (13)

Furthermore, applying Assumption 3 to the first term in the
right-hand side of (13) yields

φ[E(x(t + 1))] − φ[E(x(t))] ≤
E(x(t))′ {2δP + 2(A + BK)′P (A + BK) − P} E(x(t)).

(14)

Noting that

L = E(x(t))′(Q + K ′RK)E(x(t)), (15)

we can see that if

P −2(A+BK)′P (A+BK)−2δP −Q−K ′RK � 0 (16)

is satisfied, then inequality (10) holds true.
In the following, it is shown that above inequality (16) is

equivalent to inequality (11).
Pre- and post-multiplying (16) by Z yields

(1−2δ)Z−2(AZ+BG)′Z−1(AZ+BG)−ZQZ−G′RG � 0
(17)

Using the following relation

ZQZ + G′RG =
[

QZ
RG

]′ [
Q 0
0 R

]−1 [
QZ
RG

]
,

we can see that (17) is equivalent to the following:

(1 − 2δ)Z

−
⎡
⎣ AZ + BG

QZ
RG

⎤
⎦
′ ⎡
⎣

Z
2 0 0
0 Q 0
0 0 R

⎤
⎦
−1 ⎡

⎣ AZ + BG
QZ
RG

⎤
⎦ � 0

(18)

Using Lemma 2, we can see that the Schur compliment of
(11) is equivalent to (18). Consequently, the proof has been
completed.
Let a function V [E(x(t))] : R

n → R+ be defined by

V [E(x(t))] := min
U(t)

J [E(x(t)), E(X(t)),U(t)]. (19)

Let U∗(t) denote the sequence of the optimal control input
over the prediction horizon defined by

U∗(t) :=

⎡
⎢⎣

u∗(t)
...

u∗(t + N − 1)

⎤
⎥⎦

:= arg min
U(t)

J [E(x(t)), E(X(t)),U(t)]. (20)

Let X∗(t) = [x∗(t + 1), · · · , x∗(t + N)]′ denote the optimal
state sequence of the closed-loop system over the prediction
horizon using U∗(t). Let Û∗(t + 1) be defined by

Û∗(t + 1) :=

⎡
⎢⎢⎢⎣

u∗(t + 1)
...

u∗(t + N − 1)
u(t + N)

⎤
⎥⎥⎥⎦ . (21)

Therein, the final optimal control input u∗(t + N) is replaced
with any feasible control input u(t + N). Accordingly, let
X̂∗(t + 1) be the state sequence of the closed-loop system
using Û∗(t + 1).
Here, we introduce the well-known standard assumption for

the stability analysis of the MPC system [24].
Assumption 4: There exists a function α ∈ K∞ such that

V [E(x(t))] ≤ α (‖E(x(t))‖) (22)

is satisfied for all t ∈ N.
Note that if there exists a positive constant ρ such that

‖u∗(t)‖ ≤ ρ ‖E(x(t))‖
is satisfied for all t ∈ N, then Assumption 4 is satisfied.
Thereby, Assumption 4 is called the weak controllability
assumption [24].
Here, we provide the stability criteria for the closed-loop

system using the stochastic MPC.
Theorem 1: Under Assumptions 1–4, the closed-loop

system using stochastic MPC input U∗(t) is almost surely
asymptotically stable in the mean if there exist Z and G such
that LMI (11) is satisfied.

Proof: It follows from (19) that

V [E(x(t))] = L [E (x(t)) , u∗(t)]

+
t+N−1∑
k=t+1

L [E (x∗(k)) , u∗(k)] + φ [E (x∗(t + N))] (23)

Using the relation

J [E(x(t + 1)), E(X∗(t + 1)),U∗(t + 1)]

≤ J
[
E(x(t + 1)), E(X̂∗(t + 1)), Û∗(t + 1)

]
, (24)

we have the following:

V [E(x(t + 1))] =
t+N∑

k=t+1

L [E (x∗(k)) , u∗(k)]

+ φ [E (x∗(t + N + 1))]

≤
t+N−1∑
k=t+1

L [E (x∗(k)) , u∗(k)]

+ L [E (x∗(t + N)) , u(t + N)] + φ [E (x(t + N + 1))]

=: V̂ [E(x(t + 1))] (25)

Let V̂ [E(x(t + 1))] be defined as above. Using the above
inequality, we have the following:

V [E(x(t + 1))] − V [E(x(t))]

≤ V̂ [E(x(t + 1))] − V [E(x(t))]
= −L [E (x(t)) , u∗(t)] + L [E (x∗(t + N)) , u(t + N)]
+ φ [E (x(t + N + 1))] − φ [E (x∗(t + N))] (26)

We can see from Lemma 5 that there exists u(t + N) such
that the following inequality holds.

φ [E (x(t + N + 1))] − φ [E (x∗(t + N))]
≤ −L [E (x∗(t + N)) , u(t + N)] (27)
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Applying (27) to (26) yields

V [E(x(t + 1))] − V [E(x(t))] ≤ −L [E (x(t)) , u∗(t)] . (28)

Here, note that there exists a positive constant ν such that the
following inequalities hold.

V [E(x(t))] ≥ L [E (x(t)) , u∗(t)]
≥ E(x(t))′QE(x(t))
≥ ν ‖E(x(t))‖ (29)

Therefore, it follows that

V [E(x(t + 1))] − V [E(x(t))] ≤ −ν ‖E(x(t))‖ (30)

Consequently, under Assumption 4, we can see that there exist
K∞ functions α1 and α2 such that the following inequalities
are satisfied.

α1 (‖E (x(t))‖) ≤ V [E(x(t))] ≤ α2 (‖E (x(t))‖)
V [E(x(t + 1))] − V [E(x(t))] ≤ −α1 (‖E (x(t))‖)

Hence, using Lemma 1, we can conclude that E(x(t)) = 0 is
asymptotically stable. This completes the proof.
Remark 1: From Theorem 1, we can verify the stability of

the closed-loop system with the stochastic MPC by checking
LMI (11). A brief description of the procedure for solving
LMI (11) is provided below.
(i) A, B and δ are given.
(ii) Q and R are arbitrarily chosen.
(iii) Check LMI (11) using a conventional algorithm [26].
(iv) If there exist feasible solutions Z and G, then go to (v).

Otherwise, go back to (ii).
(v) P is determined by P = Z−1. Then, the procedure is

terminated.
Following the above procedure, we identify weighting
coefficients P , Q, R that can guarantee the stability of the
closed-loop system with the stochastic MPC.

VII. ILLUSTRATIVE EXAMPLE

As an illustrative example, we consider here a system whose
system coefficients are given by

A =
[

1 1
0 1

]
, B = C =

[
1
1

]
. (31)

Moreover, w(t) is set as a uniformly distributed random
variable within the interval [−5 5]. Other parameters
employed in the numerical simulations are as follows: The
prediction horizon is set as N = 3.
Here, we consider two cases for the weighting coefficients

of the performance index.
In case (I), we consider P , Q, R as in (32) that don’t satisfy

LMI (11), i.e., the asymptotic stability in the mean of the MPC
system cannot be guaranteed.

P = Q =
[

1 0
0 1

]
, R = 70 (32)

TABLE I
CLASSIFICATION OF NUMERICAL SIMULATIONS

LMI infeasible LMI feasible
Stochastic MPC Case (I) Case (II)

In case (II), we consider P , Q, R as in (33) that satisfy
LMI (11), i.e., the asymptotic stability in the mean of the
MPC system can be guaranteed.

P =
[

60 30
30 100

]
, Q =

[
1 0
0 1

]
, R = 70 (33)

Thus, we perform numerical simulations for two cases as
shown in Table I. For each case, we perform 100 trials for
numerical simulations. Thus, the initial states x(0) are given
by uniformly distributed random variables within the interval
[5 10].
Figs. 1–3 show that the system in case (I) is not almost

surely asymptotically stable in the mean. On the one hand,
Figs. 4–6 show that the system in case (II) is almost surely
asymptotically stable in the mean. Comparing case (I) with
(II), we can see that Theorem 1 is useful to verify the
asymptotic stability in the mean for the closed-loop system
with MPC. Consequently, we can verify the effectiveness of
the proposed condition by numerical simulations.

0 20 40 60 80 100

-80

-40

0

40

80

t

x

 

 

x1
x2
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Fig. 4. Time response of x(t) in case (II)
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Fig. 5. Time response of E (x(t)) in case (II)
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VIII. CONCLUSION

In this study, we proposed a design method of model
predictive control (MPC) for linear discrete-time systems with
additive stochastic disturbances under probabilistic constraints.
The stochastic MPC problem was reduced to the quadratic
programming that can be solved using a conventional
algorithm. Furthermore, we provide a sufficient condition
for the stability of the closed-loop system by means of a
linear matrix inequality that can be easily verified using
a conventional algorithm. The effectiveness of the obtained
stability condition was verified by computational simulations.
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