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Abstract—The numerical simulation has made tremendous 

advances in investigating the blood flow phenomenon through elastic 

arteries. Such study can be useful in demonstrating the disease 

progression and hemodynamics of cardiovascular diseases such as 

atherosclerosis. In the present study, patient specific case diagnosed 

with partially stenosed complete right ICA and normal left carotid 

bifurcation without any atherosclerotic plaque formation is 

considered. 3D patient specific carotid bifurcation model is generated 

based on CT scan data using MIMICS-4.0 and numerical analysis is 

performed using FSI solver in ANSYS-14.5. The blood flow is 

assumed to be incompressible, homogenous and Newtonian, while 

the artery wall is assumed to be linearly elastic. The two-way 

sequentially coupled transient FSI analysis is performed using FSI 

solver for three pulse cycles. The hemodynamic parameters such as 

flow pattern, Wall Shear Stress, pressure contours and arterial wall 

deformation are studied at the bifurcation and critical zones such as 

stenosis. The variation in flow behavior is studied throughout the 

pulse cycle. Also, the simulation results reveal that there is a 

considerable increase in the flow behavior in stenosed carotid in 

contrast to the normal carotid bifurcation system. The investigation 

also demonstrates the disturbed flow pattern especially at the 

bifurcation and stenosed zone elevating the hemodynamics, 

particularly during peak systole and later part of the pulse cycle. The 

results obtained agree well with the clinical observation and 

demonstrates the potential of patient specific numerical studies in 

prognosis of disease progression and plaque rupture.  

 

Keywords—Fluid-Structure Interaction, arterial stenosis, Wall 

Shear Stress, Carotid Artery Bifurcation.  

I. INTRODUCTION 

HE advancements in numerical simulation in recent years 

has led to aid the investigation of cardiovascular diseases. 

These studies shall be helpful to clinicians or physiologists to 

understand the mechanical environments in normal and 

diseased arteries or diseased organs. Especially, the flow in 

regions, such as bifurcation or arterial curvature is quite 

complex and more prone to development of atherosclerosis/ 
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constriction [1]. The flow behavior through normal and 

healthy artery is quite different in contrast to the stenosed 

artery with elevated stresses and high resistance to flow. The 

study of such important physiological simulation of flow 

through stenosis has profound implications for the diagnosis 

and treatment of vascular disease [3], [4]. Investigating the 

realistic physiological blood flow phenomenon accurately can 

be achieved through complex interaction of flexible arterial 

wall with the blood flow using coupled field analysis such 

Fluid Structure Interaction (FSI).  

Several past flexible and rigid wall studies have considered 

both the idealistic and patient specific geometry models based 

on in-vivo data. The flow in idealistic stenosis had been of 

much interest as it provided the nature of flow behavior 

demonstrating the highly complex flow in the down-stream 

side of stenosis [5], [6]. Further, pulsatile flow through 

stenosed elastic artery was also investigation and it was 

reported that intense increase in the pressure drop and wall 

shear stress are associated with the flow and increased stenosis 

severity. The flow resistance in arteries increases abruptly due 

to the influence of high grade stenosis [7], [8]. Also, the 

constriction and high blood pressure causes high flow 

velocity, high wall shear stress and low pressure at the throat 

of the stenosis, while in the distal side of stenosis, there will 

be low wall shear stress, flow separation and wall 

compression. However, the much required observation of flow 

behavior in critical areas such as bifurcation, carotid bulb, 

flow separation or turbulence in realistic anatomical models is 

possible only through subject specific flow simulation [9]. A 

reliable flow simulation requires the realistic 3D vascular 

geometric model and unsteady flow boundary conditions.  

There are several studies which have investigated the 

importance of 3D realistic geometry and different techniques 

of actual model generation. The geometry data is obtained 

through in-vivo measurements such as MRI slides, ultrasound 

and angiogram data such as CT, DSA and x-ray [10], [11]. 

There was good agreement in the results obtained between the 

numerical simulation results and both phantom and in-vivo 

experiments. Thus, the resulting hemodynamic observation 

can be compared with the in- vivo data and used to assess the 

health risk, of occlusion, embolism, or plaque rupture, posed 

by a particular plaque deposit [12]. Hence, in the present study 

hemodynamics is studied in subject specific model 

considering a case study of patient diagnosed with partial 

narrowing of complete right Internal Carotid Artery and 

normal left carotid bifurcation. The numerical investigated is 

carried out considering two-way sequentially coupled transient 

FSI analysis focusing on flow parameters like velocity, wall 
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shear stress, pressure profile, arterial wall deformation and 

von-Mises stresses in detail. Thus, these observations are 

beneficial in predicting the outcome of severity of stenosis and 

help the medical fraternity in detailed understanding of flow 

behavior across stenosis and its progression.  

II. METHODOLOGY 

The blood flow behavior in common carotid artery is 

assumed to be governed by the Navier–Stokes equations of 

incompressible flows. The fluid domain in FSI simulation is 

solved using modified momentum equation adopting moving 

velocity along with continuity equation as given in (1) [2], 

[11], [12]: 

 

( ) ( ). .b ij j i i

S S

n S i Pi n S b
t

ρ ρ υ υ τ
Ω Ω

∂
∂Ω + − ∂ = − ∂ + ∂Ω

∂ ∫ ∫ ∫ ∫     (1) 

 

where ρ is the density, τ is the stress tensor, υ is the velocity 

vector, υb is the grid velocity, P is the pressure, bi is the body 

force at time t. 

The artery wall is assumed to be elastic, isotropic, 

incompressible and homogeneous and the transient dynamic 

structural solution is given by (2) [4]. The stiffness matrix is 

updated in each time step and the Newmark method is adopted 

in updating the displacement terms at each time interval and 

further the stiffness matrix is solved using direct solver in 

particular sparse solver for each time step. 

 

[ ]{ } [ ]{ } [ ]{ } { }aM U C U K U F+ + =&& &        (2) 

 

where M is the structural mass matrix, C is the structural 

damping matrix, K is structural stiffness matrix, F
a
 is the 

applied load vector and  Uand U ,U &&&  represent acceleration, 

velocity and displacement vector respectively. 

The two-way sequentially coupled transient FSI analysis is 

performed using FSI solver in ANSYS 14.0. FSI solver solves 

fluid and solid domain separately using ANSYS CFX and 

ANSYS MECHANICAL respectively as shown in Fig. 1. The 

pressure loads from initial ANSYS CFX solution is transferred 

to the solid domain through FSI interface and later ANSYS 

structural domain is solved. Further details of FSI solver are 

described in detail as observed in [2], [13]. 

In the present study, a case study of old patient is taken up 

whose left carotid system is normal and right Common 

Carotid Artery (CCA) is also normal with partial narrowing of 

approximately 60% of the entire segment of Internal Carotid 

Artery (ICA). However, external carotid artery (ECA) in both 

the carotids appears to be normal. The partially stenosed right 

ICA is highlighted in three different views as shown in Fig. 2 

(a), and similarly the normal left carotid bifurcation is shown 

in Fig. 2 (b). The 3D fluid and solid surface models of normal 

and stenosed carotid bifurcation system aneurysm are 

generated using MIMICS-14 based on CT angio data. The 

solid model is generated using CATIAV5R20.0, versatile 

geometric modeling software and further transferred to 

ANSYS 14.0 for the meshing. 

 

Fig. 1 FSI algorithm 

 

 

(a) 

 

 

(b) 

Fig. 2 Different views of CT scan of case-2 carotid bifurcation,              

(a) Right carotid– partial ICA stenosis and (b) Left carotid – normal 

 

The normal carotid fluid and solid models are meshed with 

35,000 and 28,000 hexahedral elements respectively as shown 

in Fig. 3. Similarly, stenosed carotid bifurcation solid and 

fluid models are discretized into 33420 and 26820 hexahedral 

elements as shown in Fig. 3. In the present study, time varying 

velocity pulse is applied at inlet of both normal and stenosed 

carotid system based on patient specific Ultrasound Duplex 

scan as shown in Fig. 4. To include the peripheral resistance, a 

time varying pressure wave form is applied at the outlet as 

shown in Fig. 4 [5]. Each pulse cycle for a time period of 0.8 s 
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is discretized into 180 time steps to simulate the flow behavior 

more accurately. The inlet and outlet of both the normal and 

stenosed carotid solid models are constrained by specifying 

zero-displacement in all the directions and rest of the nodes 

are left free to undergo displacement in any direction [14], 

[15]. 

 

 

Fig. 3 FSI carotid bifurcation model  

  

 

Fig. 4 Flow boundary conditions 

  

Even though blood flow is non-Newtonian physiologically, 

however in the present study, since the focus in on large 

arteries, Newtonian assumption is acceptable as relatively high 

shear rate occurs. In medium and smaller arteries, non-

Newtonian assumption is valid as shear rate is lower than 

100s
-1

 and shear stresses depend non-linearly on the 

deformation rate. The density and dynamic viscosity of the 

blood is considered to be 1050 kg/m
3
 and 0.004N-sec/m

2
 

respectively [15].  

The arterial wall is assumed to behave linearly-elastic with 

density of 1120 kg/m
3
, Poisson’s ratio of 0.40 and elastic 

modulus is 0.9 MPa [10], [15]. The convergence criteria of 

fluid flow and across the fluid-surface interface is set at 10
-4

 

and 10
-3 

respectively and low Reynolds k-ω model is used to 

model the turbulence behavior [8]. These simulation results 

provide useful data in quantifying the hemodynamic changes 

to medical fraternity in understanding the clinical cases 

indicating the potential of atherosclerotic progression and 

rupture. 

III. RESULTS AND DISCUSSION 

The simulation of both the carotids is carried out for 3 pulse 

cycle and results in the last cycle is considered for the 

investigation. The hemodynamics parameters like velocity, 

wall shear stress, pressure, arterial wall deformation and von-

Mises stress are studied at specific instants of pulse cycle like 

early systole, peak systole, early diastole and late diastole. 

WSS, von-Mises stress are considered to be the most crucial 

and interesting hemodynamic parameters related to the 

atherosclerotic progression. It varies with time due to the 

pulsatility of the flow waveform and the maximum value 

generally occurs at the peak systole when the inflow is 

maximum. 

The velocity streamlines contours of stenosed and normal 

carotid at peak systole is compared as shown in Fig. 5. The 

partial narrowing of concentric nature in right ICA has 

substantially increased the velocity at the stenosed region. The 

flow pattern in right side stenosed carotid bifurcation is 

moderately altered in comparison with the left side normal 

carotid bifurcation; whereas, similar flow pattern is 

demonstrated in CCA of both the carotids [10].  
 

 

Fig. 5 Comparison of velocity contours  

 

Flow separation can be clearly observed at the bifurcation 

region, especially at the carotid bulb oriented towards ICA 

root of both the carotids. The flow separation zone extends to 

longer range towards distal part of stenosed ICA due to partial 

narrowing when compared with normal ICA [3]. The normal 

carotid bifurcation shows the typical flow distribution at the 

bifurcation tip with higher flow rate in ICA than in ECA. The 

stenosed right ICA restricts the flow moderately and partially 

diverts the remaining flow towards left ECA [5]. The right 

stenosed carotid bifurcation has higher velocity range in 

comparison with the left normal carotid (Fig. 5).  

WSS contours of stenosed and right carotid system is 

compared as shown in Fig. 6 at peak systole. Even though the 

left carotid appears to be normal; but, WSS profile is quite 

distinct unlike typical WSS pattern in carotid bifurcation, 

because of the extremely tortuous ECA and ICA. The WSS is 

moderately higher in CCA, drops drastically at the bifurcation 
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region, and increases again at inner wall of ECA and ICA at 

distal end [18]. However, in stenosed carotid system, due to 

partial narrowing of complete ICA till distal end, the WSS 

behavior is highly altered, particularly in the bifurcation 

region [16]. At this location, flow separation is found to be 

quite intense, resulting in significantly low WSS, covering 

larger area in CCA and ICA [19]. Also, there is significant rise 

in WSS, near the apex towards the inner wall of ECA, and 

maximum at stenosed region in right ICA. The highly 

disturbed flow in the right carotid bifurcation will increase the 

vortex formation and further induce the atherosclerotic 

damage to arterial wall. 
 

 

Fig. 6 Comparison of wall shear stress contours  

 

The right carotid has higher deviation in WSS when 

compared with the left carotid system (Fig. 7). The shear 

stress is distributed to larger area occupied by ICA and at 

bifurcation zone, thus stimulating the aggravation of 

atherosclerosis and inducing endothelial dysfunction [19]. 

Also, the higher wall shear stress at the maximum stenosed 

region, especially during head down position will increase the 

platelet aggregation and accelerating the plaque formation and 

increasing the risk of thrombosis [10]. 

The pressure contours at peak systole in stenosed and 

normal carotid bifurcation are compared in Fig. 7. The 

pressure distribution pattern shows significant changes in both 

the carotids [20]. The flow restriction in right ICA has 

elevated the pressure at the bifurcation apex extending it up to 

the proximal location of narrowing [10]. It also influences in 

elevating the pressure in CCA proximal to bifurcation region. 

This increased pressure profile exists till the mid diastole due 

to the flow restriction, while the normal left carotid bifurcation 

demonstrates a typical pressure profile with the maximum 

pressure at the bifurcation tip [19]. The left ECA is severely 

tortuous influencing the pressure rise when compared with 

right ECA, which has smaller curvature.  

 The arterial wall deformation distribution of normal and 

stenosed carotid is shown in Fig. 8. The maximum wall 

deformation is found to be at the bifurcation region in both the 

carotids, similar to that of normal carotid bifurcation 

throughout the pulse cycle. However, the variation in 

deformation magnitude varies due to the difference in the 

lumen diameter, severity of tortuous in region of bifurcation 

zone, ICA and ECA. 
 

 

Fig. 7 Comparison of pressure contours  
 

 

Fig. 8 Comparison of arterial wall displacement contours  

 

The concentric mild stenosis till the distal end of right ICA 

has influenced the increase in stiffness of the artery and 

further resulted in reduced deformation at the stenosed region, 

as observed from Fig. 8 [14]. However, the increased pressure 

proximal to the entrance of stenosis considerably increases the 

wall displacement [17]. When compared with stenosed 

carotid, there are no traces of arterial wall stiffening, and wall 

deformation is observed in the entire branch of ICA in normal 

carotid [18]. When flow decelerates during end diastole, the 

turbulence in bifurcation region and carotid bulb aggravates, 

resulting in pressure drop and reduced wall deformation.  

The von-Mises stress distribution is shown in Fig. 9 at peak 

systole in both the carotids [1]. The maximum stress is located 

at the bifurcation zone in both carotid systems [7]. Due to 
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partial narrowing of entire right ICA, the entire stretch of 

stenosis is influenced by very low stress and subjected to 

compression when compared with the left carotid [10]. The 

steep stress gradient in right carotid is more significant unlike 

to that observed in left carotid system [18]. The combination 

of low pressure, high wall shear stress and compressive von 

Mises stress influences the atherosclerotic progression and 

even lead to rupture.  

 

 

Fig. 9 Comparison of von Mises stress contours  

 

The stress concentration factor is 2.2 and 3.75 in the apex 

region of left and right carotid respectively. The presence of 

partial narrowing has influenced the increased pressure in 

upstream which is related to rise in von Mises stress 

considerably. Hence, the stress pattern is more distributed and 

stretched in right CCA when compared with the left carotid 

bifurcation. Therefore, the present investigation can simulate 

the risk or prognosis of arterial disease and it cannot be 

neglected as it has profound influence on the altering the flow 

dynamics, WSS distribution, stress levels and wall 

deformation. 

IV. CONCLUSIONS 

The present case simulated using FSI is a combination of 

normal and partially stenosed carotid bifurcation. The right 

ICA is partially narrowed, while the rest of the carotid system 

is diagnosed to be normal. The flow restriction offered by the 

partial stenosis has considerably affected the flow in 

downstream side. However, due to mild narrowing (less than 

70%), clinically it is termed to be less significant with low risk 

factor. From the present investigation, significantly variation 

is observed in right carotid in contrast to the left carotid 

system. The partial narrowing has reduced the arterial wall 

stiffness (due to increased pressure) and increased the arterial 

wall deformation. The increased WSS in the region of 

maximum stenosis has the large risk of atherosclerotic plaque 

rupture. The low wall shear stress at the bifurcation is found to 

be more in right carotid than the left carotid highlighting the 

region is prone to atherosclerosis progression. The large 

variation in pressure in turn increases the wall deformation, 

which affects the stiffness of the arterial wall. The arterial wall 

becomes stiffer with the increased severity of stenosis. Severe 

stenosis will increase the pressure and in turn increasing the 

arterial wall stiffness. The risk factor associated is quite high 

in the right carotid than the left carotid system. 
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