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Abstract—Intermittent behavior near the boundary of phase 

synchronization in the presence of noise is studied. In certain range of 
the coupling parameter and noise intensity the intermittency of eyelet 
and ring intermittencies is shown to take place. Main results are 
illustrated using the example of two unidirectional coupled Rössler 
systems. Similar behavior is shown to take place in two 
hydrodynamical models of Pierce diode coupled unidirectional. 
 

Keywords—Chaotic oscillators, phase synchronization, noise, 
intermittency of intermittencies, control. 

I. INTRODUCTION 

NTERMITTENCY is an ubiquitous phenomenon in 
nonlinear science [1]. It is observed in different systems 

including the physical, physiological and biological ones (see, 
e.g., [2]-[8]). Several types of the intermittent behavior are 
traditionally distinguished, among which there are type I-III 
[1], [9], on-off [10], eyelet [5], [11] and ring [12] 
intermittencies. Despite of the different mechanisms resulting 
in the onset of the types of intermittency mentioned above and 
their different statistical characteristics in all known cases for 
the fixed values of the control parameters time series contains 
only two different type of the behavior alternating with each 
other. Later it has been shown that for several conditions, for 
example, near the boundary of phase synchronization of non-
autonomous or coupled chaotic oscillators and systems 
demonstrating periodic dynamics in the presence of noise in 
the certain range of the time scales of observation the 
coexistence of two different types of intermittent behavior is 
possible to exist. Such regime has been called as intermittency 
of intermittencies [13]. It is a principally new level of 
complexity in the nonlinear system dynamics and therefore is 
worth of investigation.  

In [13] the general theory of coexistence of two different 
types of intermittent behavior in nonlinear systems has been 
developed. For the case of intermittency of eyelet (type I-
intermittency in the presence of noise in supercritical region of 
the control parameter) and ring intermittencies the analytical 
expressions for the laminar phase lengths for the fixed value 
of the control parameter and dependence of the mean length of 
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laminar phases on the criticality parameter have been deduced. 
The results of numerical simulation of chaotic systems and 
oscillators demonstrating periodic dynamics in the presence of 
noise being near the boundary of phase synchronization in the 
certain range of time scales are in a good agreement with the 
results of theoretical predictions. 

In the present Report we analyze the possibility of existence 
of intermittency of intermittencies in chaotic systems being 
near the boundary of phase synchronization in the presence of 
noise. As it would be shown below, in the certain range of the 
control parameter values and intensity of noise the coexistence 
of eyelet and ring intermittencies takes place. 

II. RÖSSLER SYSTEMS 

Let us consider characteristics of intermittency of 
intermittencies near the boundary of phase synchronization in 
the presence of noise using the example of two unidirectional 
coupled Rössler systems. The system under study is given by 

 

),(

,

),(

),(

,

,

222

2222

212222

111

1111

1111

cxzpz

Dayxy

xxzyx

cxzpz

ayxy

zyx





















                    (1) 

 
where x1,2(t) = (x1,2, y1,2, z1,2)

T are state vectors of the drive and 
response systems, respectively, a = 0.15, p = 0.2, c = 10, 
1=0.93, 2=0.95 are the control parameter values, t is a 
random Gaussian process with zero mean and unit variance, D 
is a noise intensity. To integrate the stochastic differential 
equations (1) we have used the four order Runge-Kutta 
method adapted for the stochastic differential equations [14] 
with time discretization step t = 0.001. To detect the phase 
synchronization regime we have analyzed the phase 
differences of interacting systems and testified the phase 
locking condition 
 

const.|)()(||)(| 21  ttt  (2) 
 

The phases 1,2(t) of chaotic signals have been introduced 
into consideration as rotation angles on (x1,2(t), y1,2(t))-planes 
[15]. 

First of all we analyze the influence of the noise intensity 
on the boundary value of the phase synchronization regime 
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onset in system (1). The results of our calculations show that if 
the noise intensity exceeds the certain critical value the 
synchronous regime starts destructing due to the loss of the 
phase coherence of the response system attractor. It is clear 
that in the fields where the boundary of the synchronous 
regime is not changed dramatically (D ≤ 9) the noise will not 
affect sufficiently both on the boundary of the synchronous 
regime onset and characteristics of intermittency taking place 
near that boundary. At the same time, in the field of the loss of 
the phase-coherence of the response system attractor (D ≥ 9) 
the noise is able to bring new features in the characteristics of 
intermittency. 

 

 

Fig. 1 Phase trajectories of the response Rössler system on the 
rotating plane (x', y'): (a)  = 0.045, D = 1.5 - the phase 

synchronization regime, (b)  = 0.037, D = 1.5 - eyelet intermittency, 
(c)  = 0.045, D = 10 - ring intermittency, (d)  = 0.037, D = 10 - 

intermittency of eyelet and ring intermittencies 
 
To analyze the characteristics of intermittency taking place 

in the systems under study let us analyze the behavior of the 
response systems on the rotating plane in the same way as it 
has been done in [12], [16]: 
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where 1 = 1(t) is the phase of the drive system, x2, y2 are the 
coordinates of the response system. In Fig. 1 phase trajectories 
of Rössler oscillators on the rotating plane (x',y') for different 
values of the noise intensity D and coupling parameter  are 
shown. Fig. 1 (a) corresponds to the cases when in the system 
under study the synchronous dynamics takes place. In this 
case the response system attractor is phase-coherent and phase 
trajectory of the response system looks like a smeared fixed 
point which does not envelop origin of the rotating plane. 
Below the boundary of the phase synchronization in the case 
when the intensity of noise is small enough as in the case of 
the absence of noise the eyelet intermittency is observed (see 
Fig. 1 (b)). The response system attractor is also phase-
coherent in this case and phase trajectory on the rotating plane 
is represented by the noised limit cycle. The increase of the 

noise intensity results in the loss of the phase coherence of the 
response system attractor that is accompanied by envelop of 
the origin in the rotating plane (Figs. 1 (c) and (d)). Envelop of 
the origin can be realized in two different ways. If the 
coupling parameter value exceeds the boundary value of the 
synchronous regime onset in the absence of noise but for the 
selected value of the noise intensity the phase synchronization 
does not exist the phase trajectory looks like a smeared fixed 
point enveloping origin (Fig. 1 (c)). In this case the ring 
intermittency takes place. If the coupling parameter is less 
than the boundary value of the phase synchronization in the 
absence of noise the phase trajectory on the rotating plane is 
represented by a smeared limit cycle enveloping origin (Fig. 1 
(d)). In this case the coexistence of eyelet and ring 
intermittencies is observed. 

 

 

Fig. 2 Normalized distributions of the laminar phase length in the 
regime of intermittency of eyelet and ring intermittencies in two 
unidirectional coupled Rössler systems for different values of the 

control parameters (points) and their theoretical approximations (4) 
(solid lines): 1 –  = 0.034, T1 = 780, T2 = 4500; 2 –  = 0.036, 

T1 = 2700, T2 = 4500; 3 –  = 0.038, T1 = 12500, T2 = 4500 
 

To confirm the presence of intermittency of intermittencies 
near the boundary of phase synchronization in the presence of 
noise let us analyze the statistical characteristics of 
intermittency, i.e. the distribution of the laminar phase lengths 
for the fixed values of the control parameters and dependence 
of the mean length of the laminar phases on the criticality 
parameter. In [13] we have shown that in the regime of 
coexistence of eyelet and ring intermittencies such distribution 
should obey the following relation: 
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where (a,z) is incomplete -function. At that, the mean 
length of the laminar phases for this regime would be given by 
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where T1,2 can be obtained numerically for the regimes when 
the only one type of intermittent behavior (i.e. the eyelet or 
ring intermittencies) should exist [13]. 
 

 

Fig. 3 Dependence of the mean length of the laminar phases on the 
coupling parameter in the regime of intermittency of eyelet and ring 
intermittencies (D = 10) and its theoretical approximation (5). The 

numerical data are marked by points; their theoretical approximation 
is shown by solid line 

 
In Fig. 2 distributions of the laminar phase lengths in the 

regime of intermittency of intermittencies in the system under 
study for different values of the control parameters and their 
theoretical approximations are shown. It is clearly seen that in 
all considered cases the results of numerical simulations are in 
a good agreement with the results of theoretical studies that 
proofs the possibility of realization of the intermittency of 
intermittencies near the boundary of the phase synchronization 
regime in the presence of noise. 

The additional confirmation of the presence of 
intermittency of eyelet and ring intermittencies near the 
boundary of the phase synchronization in the presence of noise 
is the dependence of the mean length of the laminar phases on 
the coupling parameter. Fig. 3 illustrates such dependence for 
the system under study and its theoretical approximation. It is 
clearly seen that the numerically obtained data are in a good 
agreement with the results of theoretical predictions.  

III. PIERCE DIODES 

Similar results have been obtained for two unidirectional 
coupled hydro dynamical models of Pierce diode being in the 
presence of noise. The dynamics of such systems in the fluid 
electronic approximation is described by the self-congruent 
system of dimensionless Poisson, continuity and motion 
equations 
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with the boundary conditions 
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where  is the dimensionless potential of the electric field,  
and v are the dimensionless density and velocity of the 
electron beam 0 ≤  x ≤ 1, the indices 1 и 2 correspond to the 
drive and response coupled beam-plasma systems, 
respectively [17], [18]. The unidirectional coupling between 
such systems is realized by the modification of the boundary 
conditions on the right boundary of the systems, in the same 
way as it has been done in [19] 
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The term D(t) corresponds to the noise influence on the 
system, where (t) is stochastic Gaussian process with zero 
mean and unit variance, D is the noise intensity. Continuity 
and motion equations of (6) have been integrated numerically 
with the help of the one-step explicit two-level scheme with 
upstream differences and the Poisson equation has been solved 
by the method of the error vector propagation [20]. The time 
and space integration steps have been taken as t = 0.003 and 
x=0.005, respectively. The control parameters of Pierce 
diodes have been chosen as 1 = 2.858 and 2 = 2.860. As 
in the case of Rössler systems described above the phase 
synchronization has been detected by the verification of phase 
locking condition (2). The phases of the drive and response 
Pierce diodes have been introduced into consideration as 
rotation angles on ,2(x = 0.2, t), 1,2(x = 0.6, t))-planes as 
well as it has been done in [21], [22]. 

The numerical simulation of system (6) with the boundary 
conditions (7)-(8) shows that as in the case of system (1) the 
synchronous regime in two unidirectional coupled Pierce 
diodes starts destructing quickly with the growth of the noise 
intensity. At the same time, due to the specificity of the system 
itself, the Pierce diodes are more sensible to the influence of 
noise in comparison with the Rössler systems [23]. Therefore, 
the new effects for such spatially extended media are revealed 
for a relatively small value of the noise intensity. 

Fig. 4 illustrates the behavior of the response Pierce diode 
on the plane (x', y') rotating with the frequency of the drive 
Pierce diode defined by (3) with x2 = 2(x = 0.2, t), 
y2 = 2(x = 0.6, t) in different regimes. It is clearly seen that 
Fig. 4 is qualitatively identical to Fig. 1. In particular, if the 
noise intensity is small enough in the synchronous regime the 
response system attractor on the rotating plane looks like a 
smeared fixed point which does not envelop the origin (see 
Fig. 4 (a) and compare it with Fig. 1 (a)). The reconstructed 
attractor in this case is phase-coherent. Near the boundary of 
the phase synchronization regime in the case of the small 
values of the noise intensity the eyelet intermittency takes 
place. In this case the response system attractor is also phase-
coherent, and the phase trajectory on the rotating plane 
represents the smeared limit cycle which does not touch the 
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origin (Fig. 4 (b)). 
The behavior of the Pierce diodes is changed dramatically if 

the noise intensity becomes a big enough (Figs. 4 (c) and d)). 
Both for the coupling parameter values corresponding to the 
synchronous regime in the absence of noise as well as for the 
asynchronous one the response system attractor is phase-
incoherent (Figs. 4 (c) and (d)). At that, if in the absence of 
noise in the system under study the synchronous regime is 
realized in the same system in the presence of noise of 
relatively large amplitude the ring intermittency takes place. 
The response system attractor on the rotating plane looks like 
a smeared fixed point enveloping origin in this case (Fig. 4 
(c)). For the coupling parameter value corresponding to the 
eyelet intermittency in the absence of noise in the Pierce 
diodes subjected to the strong noise influence the coexistence 
of eyelet and ring intermittencies takes place. The response 
system attractor in such regime is represented by a smeared 
limit cycle enveloping origin (Fig. 4 (d)). 

 

 

Fig. 4 Phase trajectories of the response Pierce diode on the rotating 
plane (x', y'): (a)  = 0.058, D = 10-5 - the phase synchronization 

regime, (b)  = 0.006, D = 10-5 - eyelet intermittency, (c)  = 0.058, 
D = 0.03 - ring intermittency, (d)  = 0.006, D = 0.03 - intermittency 

of eyelet and ring intermittencies 

IV. CONCLUSION 

So, in two unidirectional coupled dynamical systems noise 
can induce new effects near the boundary of the phase 
synchronization regime onset. In particular, if the noise 
intensity is a great enough the boundary value of the 
synchronous regime onset starts increasing due to the loss of 
the phase coherence of the response system attractor. At that, 
near the boundary of phase synchronization in subcritical 
region the intermittency of eyelet and ring intermittencies 
takes place. Such phenomenon possesses a high degree of 
generality. One can expect that such regularities may be 
observed in a variety of real systems. 
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