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Abstract—In dynamic system theory a mathematical model is 

often used to describe their properties. In order to find a transfer 
matrix of a dynamic system we need to calculate an inverse matrix. 
The paper contains the fusion of the classical theory and the 
procedures used in the theory of automated control for calculating the 
inverse matrix. The final part of the paper models the given problem 
by the Matlab. 
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I. INTRODUCTION 

N the last few decades there has been a marked increase in 
college studies that combine knowledge from engineering, 

automation and informatics (e.g. mechatronics, informatics 
and automation in industrial applications, etc.). A key term 
used in these areas is „dynamic system“ – a system that 
changes with regards to time. It is much more efficient to use a 
mathematical description of the characteristics of such a 
system rather than a standard input-output description. 

A multidimensional linear system (either continuous or 
discrete) is described by a state equation. In order to calculate 
the transitional matrix it is necessary to calculate it´s inverse 
matrix. In the theory of automated control, it is calculated 
using algorithms (such as the algorithm for calculating the 
inverse matrix, Fadejev´s algorithm, Bocher´s formula for 
calculating the coefficient of a characteristic polynomial). But 
at first glance (at least for a student), the connection between 
the algorithms and knowledge gained during the first year 
math course is not evident. The goal of this paper is to remove 
this deficiency - to create a link between some of the basic 
mathematical findings (more precisely from linear algebra) 
and system theory.  

II.  INVERSE MATRIX  

A. Classic theory 

This theory is taught on most colleges in “Mathematics” or 
“Linear algebra”. A student learns the definition and basic 
properties of the inverse matrix [1], [5]. Considering that this 
paper is dedicated to the different methods of its computation, 
we will remind you of only the basic definition: Let A  be a 
regular matrix (a square matrix with a determinant different 

from 0). Matrix 1A  is an inverse matrix to matrix A  if 
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where I  is an identity matrix. 
We can calculate it using two procedures: 

a) We adjust the matrix  IA  using either column or line 

equivalent operations to get a resulting matrix  AI . 

b) Using  
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B. Inverse Matrix in the Theory of Automatized Control  

While solving a state equation we need to calculate an 
inverse matrix to the matrix  AIs  . We can use any of the 

procedures shown in the previous part. However, they are, 
especially for larger matrices, rather lengthy.  

It is much more efficient to use the process shown in [2]. 
We will show it in a way that is understandable for a reader 
who doesn’t possess deeper knowledge of linear algebra. 

We will first calculate the characteristic polynomial of 
matrix A  . We will get it by calculating the determinant of 
matrix  AIs  . After adjusting it to a normalized form we end 

up with a polynomial 
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Its coefficients are 01  ,, ,1 aan   . Auxiliary matrices (we can 

denote them e.g. 110  , , , nRRR  , can be calculated using the 

recurrent relations: 
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Then we calculate the inverse matrix  
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We calculated the coefficients of the characteristic 

polynomial using the definition. Instead, we can use Bocher´s 
formulas. We will not mention this procedure further, but it 
can be found in [2]. 
Note: Another option for calculating the inverse matrix 
 AsI   is using its expansion in the Laurent series 
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This series converges for all s , whose absolute value is 

grethe maximum of the eigenvalues of matrix A  . Using this 
procedure, we can only calculate the matrix approximately, 
but for larger matrices it is much faster. 

C.  Applying Both Theories Using MATLAB  

In order to obtain the inverse matrix 1A  to matrix A  
applying the classic theory, a direct command or a MATLAB 
function can be used [11], [12]. As regards the function, it 
structure is 

 
Y = inv(A).                 (7) 

 
Under the command  
 

Y = X^(‐1),                     (8) 
 
the inverse matrix is computed the same manner, subjected to 
the same limitations.  

Using the theory of automatized control, as mentioned 
above, we need to calculate an inverse matrix to the matrix 
 AIs  . It is necessary to keep in mind that s must be defined 

as a symbolic variable. The MATLAB script is then expressed 
as 
 
function invmat(n, A) 
syms('s'); 
I=eye(n); 
invmat=inv(s*I‐A) 
end, 
 

where n stands for matrix dimension and must be the same as 
the dimension of A matrix.  

III. DYNAMIC SYSTEM 

The internal description of a dynamic system is the relation 
between all of the variables of the system and is defined using 
state equations. The external description of the dynamic 
system is the relation between the input and output variables. 
In case of a stationary linear system it is represented by a 
transfer matrix.  

The state equations of a continuous linear system with the 
starting condition   00 x  are 
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The transfer matrix of a system can be calculated using  
 

                         DBAsICsG  1 .                       (10) 
 
The most “cumbersome” part in this formula, at least as 

time consumption is concerned, is the calculation of the 
inverse matrix.  

We can show the different ways of calculating the solution 
using an example from the textbook [2]. State equations of a 
continuous linear system with the starting condition   00 x  

are (9). 
Example 1. Matrices DCBA  , , ,  are number matrices,  
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The transfer matrix of a system can be calculated using the 

relation  
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Transfer matrix of the system 
 

        




























 00
10

01

3

1
0

3

11

21

s

ssssG
 









3

211

ss

s

s
. 

 
Using the MATLAB code mentioned above and 

complemented by the matrices B, C and D and the formula for 
obtaining the transfer matrix of the system, 

 
function tm(2, [0 1; 0 3], [1 0; 0 1], [1 2], [0 
0]) 
syms('s'); 
I=eye(n); 
invmat=inv(s*I‐A); 
G(s)=C*invmat*B+D 
end 
 
We get the result  

 
G(s) = [ 1/s, 2/(s ‐ 3) + 1/(s*(s ‐ 3))], 

 
which corresponds to the result obtained by the calculation, as  
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IV. INVERSE DYNAMIC SYSTEM 

A dynamic system defined by (9), whose transition matrix 
 sG  can be calculated using (10). An inverse dynamic system 

exists when there exist an inverse matrix to   1sG , i.e. when 

 sG  is regular (   0sG ). 

An interesting solution to this problem can be found in [3]. 
The author of the paper provides an algorithm that can be used 
to determine whether an inverse matrix exists (without 
calculating the determinant), and if it does, calculates the 
inverse dynamic system. 

We will not reproduce the theory and the algorithm that the 
solution to the example is based on, because it is found in the 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:6, 2015

316

 

 

quoted work (along with the proof). We will demonstrate on 
an example and compare it to the traditional method of solving 
the problem. 
Example 2. Matrices DCBA  , , ,  are number matrices,  
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We will create a matrix 
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Because 0210  , an inverse dynamic system does 

not exist. Let’s confirm using the classic calculation. 
 

  











 

11

1 

1

1
2

1

s

s

ss
AsI . 

 
The transition matrix is  
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This matrix is not regular (from the properties of its 
determinants it is evident that   0sG ) and therefore an 

inverse matrix does not exist.  
Using MATLAB code  
 

function deter(n, A, B, C, D) 
syms('s'); 
I=eye(n); 
M=[A B; C D] 
invmat=inv(s*I‐A); 
G=C*invmat*B+D 
det(G) 
end, 
 

We obtain the transition matrix in a form of two vectors 
 
G =  
[ 2 ‐ 2/(‐ s^2 + s + 1) ‐ (s ‐ 1)/(‐ s^2 + s + 1) 
‐ s/(‐ s^2 + s + 1), 2 ‐ 2/(‐ s^2 + s + 1) ‐ (s ‐ 
1)/(‐ s^2 + s + 1) ‐ s/(‐ s^2 + s + 1)] 
[ 1 ‐ 2/(‐ s^2 + s + 1) ‐ (s ‐ 1)/(‐ s^2 + s + 1) 
‐ s/(‐ s^2 + s + 1), 1 ‐ 2/(‐ s^2 + s + 1) ‐ (s ‐ 
1)/(‐ s^2 + s + 1) ‐ s/(‐ s^2 + s + 1)],  
 

which, after several modifications, corresponds to the results 
obtained by the classic calculation: 
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After modification 
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Determinant is equal to 0.  

Note: Matrix 
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omit lines kiii ,...,, 21  and columns kjjj ,...,, 21  from matrix M . 

Example 3. Matrices DCBA  , , ,  are number matrices,  
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Matrix  
 





























1110

1101

0001

0110

DC

BA
M  

 
and 010  M , the inverse dynamic system exists. 

Based on the algorithm shown in work [3], we get the 
relations for the inverse dynamic system  
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We will prove its existence (for comparison) using the 

traditional method that uses the transition matrix. 
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The transition matrix is  
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Its determinant is 
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Therefore the matrix is not regular. 

Using the same MATLAB code as in Example 2,  
 

function deter(n, A, B, C, D) 
syms('s'); 
I=eye(n); 
M=[A B; C D] 
invmat=inv(s*I‐A); 
G=C*invmat*B+D 
det(G) 
end, 
 
We obtain the transition matrix in a form 
 
G =  
[ s/(s^2 ‐ 1) + 1, 1] 
[ 1/(s^2 ‐ 1) + 1, 1], 
 

which, after several modifications, corresponds to the results 
obtained by the classic calculation: 
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Determinant takes the form: 
 

DET = 1/(s + 1). 

V. CONCLUSION 

The problem of finding an inverse matrix in dynamic 
system theory is much vaster than we have shown. Interesting 
results can be found in [9] and [10]. They contain finding the 
inverse matrix by inverting graphs.  

More interesting findings can be found in [4], [6]-[8]. For 
example, [6] presented dynamic algorithms for computing: 
matrix determinant, matrix adjoint, matrix inverse, and solving 
linear system of equations. 
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