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Empirical Mode Decomposition Based Multiscale
Analysis of Physiological Signal

Young-Seok Choi

Abstract—We presents a refined multiscale Shannon entropy for
analyzing electroencephalogram (EEG), which reflects the underlying
dynamics of EEG over multiple scales. The rationale behind
this method is that neurological signals such as EEG possess
distinct dynamics over different spectral modes. To deal with the
nonlinear and nonstationary nature of EEG, the recently developed
empirical mode decomposition (EMD) is incorporated, allowing a
decomposition of EEG into its inherent spectral components, referred
to as intrinsic mode functions (IMFs). By calculating the Shannon
entropy of IMFs in a time-dependent manner and summing them over
adaptive multiple scales, it results in an adaptive subscale entropy
measure of EEG. Simulation and experimental results show that
the proposed entropy properly reveals the dynamical changes over
multiple scales.

Keywords—EEG, subscale entropy, Empirical mode
decomposition, Intrinsic mode function.

I. INTRODUCTION

ELECTROENCEPHALOGRAM (EEG) is indicative of
the electric activity of the brain, whose waveform

contains useful information about the states of the brain.
Recently, EEG has been exploited in connection with
functional brain mechanisms as a potential tool for the
identification of brain disorders [1]. However, visual inspection
cannot monitor the subtle information embedded in EEG.
Thus, the need for objective measures gives rise to
the development of quantitative EEG measure to uncover
neurological states [2][3]. Until recently, quantitative EEG
measures based on entropy have shown promising results
for monitoring and detecting brain rhythm [4][5]. Among
those, the Shannon entropy [6] has been widely used due
to its simplicity. However, EEG signals is representative of
the interacting mechanisms between numerous neurons across
multiple temporal and spatial scales, resulting in dynamical
changes in both time and frequency associated with the
states of the brain [1]. Thus, the Shannon entropy which is
calculated using gross EEG signals may not properly reveal
the underlying dynamics of EEG over multiple scales.

Here, a new entropy measure which exploits
scale-dependent dynamics of EEG is presented. In order
to extract the scale-dependent oscillatory components of
EEG, the empirical mode decomposition (EMD) which is a
data-driven decomposition tool, is incorporated because of its
suitability to a nonstationary time-series [7]. It decomposes
a time-series into different spectral components inherent in
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the time-series, namely intrinsic mode functions (IMFs).
Thus, due to the potential of the EMD, it has been gradually
used to analyze nonstationary physiological signals [8][9].
Next, calculating the Shannon entropy of IMFs in a manner
of a time-dependent scheme and summing over data-driven
multiple scales, it leads to a scale-dependent quantitative
measure of EEG, termed a data-driven subscale entropy.

Through simulation and experimental studies, the proposed
data-driven subscale entropy has shown its effectiveness in
terms of sensitivity for reflecting the dynamical changes over
scales.

II. DATA-DRIVEN SUBSCALE ENTROPY

A. Empirical Mode Decomposition of EEG

Recently, Huang et al. [7] have developed a data-driven
decomposition method, thus being suited for nonlinear and
nonstaionary time series. In an iterative manner, termed a
sifting process, EMD extracts the highest frequency oscillation
(finest temporal scale) from the underlying time series,
being considered as an IMF. The remaining part after the
extraction contains lower frequency oscillatory components.
The resulting IMFs represent the oscillatory patterns at
different scale. This gives rise to the following major feature
of EMD: EMD results in basis functions which are derived
from the time-series in self-originated way, whereas other
conventional methods such as Fourier and wavelet analyses
rely on the use of pre-defined basis functions.

Let s(i) denote the raw sampled EEG signal. Then,the EMD
consists of the following steps:

1) Identify all the local maxima and minima of s(i).
2) Interpolate between local maxima and minima

respectively, getting an upper envelope eu(i) and a
lower envelope el(i).

3) Compute the mean between eu(i) and el(i), i.e., μ(i) =
[eu(i) + el(i)]/2.

4) Subtract the mean from the original signal d(i) = s(i)−
μ(i).

5) Repeat steps 1–4 until d(i) satisfies the above two
criteria to be an IMF. If d(i) satisfies conditions, it
becomes the first intrinsic mode function that contains
the finest temporal scale in the signal. Also denote as
d1(i).

6) Compute the residue r1(i) = s(i)− d1(i).
7) Iterate through steps 1–6 with s(i) instead of s(i)

until the residue satisfies some stopping criterion.
A commonly used stopping criterion is the sum of
difference.
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Fig. 1. Time evolution of the Shannon entropy and the data-driven subscale entropy for synthetic signal with time varying frequency components. (a)
Synthetic signal in time domain. (b) Comparison of the Shannon entropy and data-driven subscale entropy.

Through the sifting process, the raw EEG signal s(i) is
decomposed as follows:

s(i) =
K∑

k=1

dk(i) + rK(i), (1)

where K is the number of all extracted intrinsic mode
functions, dk(i) is the kth IMF, and rK(i) is the final residue.
The last residue rK(i) can be considered as the last IMF, and
thus (1) can be rewritten as s(i) =

∑K+1
k=1 dk(i).

B. Data-driven Subscale Entropy

Next, the distribution of the time-varying individual
oscillatory components obtained in (1), i.e., dk(i), are utilized
to evaluate the adaptive subscale entropy. To deal with
continuously acquired signals, EEG recording is divided into
a number of segments using a sliding temporal window,
leading to a time dependent entropy measure [10]. For a given
{s(i) : i = 1, · · · , N}, a sliding temporal window w ≤ N and
a sliding interval Δ ≤ w are defined. Then, the nth sliding
window of the raw EEG signal are defined by

sn(i) = {s(i); i = 1 + nΔ, . . . , w + nΔ}, (2)

where n = 0, 1, · · · , [(N − w + 1)/Δ] and [x] denotes the
integer part of x.

Then, EMD is incorporated to utilize the underlying
time-varying oscillatory components in EEG. Let assume EEG
is decomposed by a sifting process, yielding totally K IMFs
and one residual which is considered as (K+1)th IMF. A set
of IMFs, EMD[sn(i)], is obtained from EEG in the sliding
window sn(i)

EMD[sn(i)] = [d1
n,d

2
n, . . . ,d

K+1
n ], (3)

where dk
n = [dk(i); i = 1 + nΔ, . . . , w + nΔ] for k =

1, . . . ,K + 1 denote the kth IMF in the nth sliding window.
In order to compute the probability distributions of the

IMFs, dk
n for k = 1, . . . ,K+1 are partitioned into M disjoint

intervals {Im,m = 1, . . . ,M} spanning the range between the
minimum and maximum values of IMF with ll = min{dk

n}
and lM = max{dk

n}, where l1 < l2 < . . . < lM , which is as
follows:

EMD[sn(i)] = [d1
n,d

2
n, . . . ,d

K+1
n ] = ∪M

m=1Im, (4)

Then, pkn(m) is the probability that the IMF belongs to the
interval Im in kth IMF dk

n. It is computed as a ratio of number
of samples of dk

n within Im and the total sample number of
dk
n.
By sliding the window w, a data-driven subscale entropy

(DSE) of Shannon framework in the kth scale is defined as

DSEk(n) = −
M∑

m=1

pkn(n) log(p
k
n(n)), (5)

where k = 1, . . . ,K+1, 0 ≤ pkn(m) ≤ 1, and
M∑

m=1
pkn(m) = 1.

Finally, the data-driven subscale entropies in each scale are
summed over all scales, leading to the adaptive subscale
entropy

DSE(n) =

K+1∑

k=1

DSEk(n). (6)

III. RESULTS

A. Simulation

To verify the capability of the proposed adaptive
subscale entropy, a synthesized signal consisting of Gaussian
distribution and multiple sinusoidal components is used, which
is shown in Fig. 1(a). For the first 4 sec, the synthetic signal has
Gaussian distribution. Following periods of the synthetic signal
has different number of sinusoids in time-dependent manner
as follows: From 4 to 8 sec, it begins with a single sinusoid
of 1 Hz, followed by the addition of one more sinusoid with 5
Hz after 4 sec. From 12 to 16 sec, it consists of three sinusoids
whose frequencies are 1, 5, and 10 Hz. During following 4 sec,
it consists of four sinusoids whose frequencies are 1, 5, 10, and
20 Hz. During the last 4 sec, five sinusoids with 1, 5, 10, 20,
and 40 Hz are included. From the perspective of entropy, it is
expected that the more the number of sinusoidal components,
the higher value of entropy. Fig. 1(b) depicts the results of the
conventional Shannon entropy and the data-driven subscale
entropy, respectively. In the figure, the Shannon entropy is
almost constant regardless of the distribution and the number
of sinusoidal components of the signal, while the data-driven
subscale entropy has higher value in accordance with the
increase of sinusoidal components and is discriminative with
Gaussian distribution.
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Fig. 2. Three EEG recordings chosen at different phase of brain injury and their EMD results. (a) Baseline EEG at 5 min, (b) Early recovery EEG at 50
min, and (c) Late recovery EEG at 180 min from the beginning of experiment, respectively. (d)–(f) IMFs of (a)–(c), respectively. Top traces denote IMFs
with highest scale d1 and bottom traces depict IMFs with lowest scale d5.
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Fig. 3. Time evolutions of the entropy measures of EEG for three rats (NDS = 74, 59, and 50). (a) Shannon entropy. (b) Data-driven subscale entropy.

B. Experimental Study on EEG following Brain Injury

Next, this study investigate EEG signals from rats subject
to hypoxic-ischemic brain injury due to cardiac arrest. The
experimental model of brain injury by cardiac arrest has
been approved by Animal Care and Use Committee of the
Johns Hopkins Medical Institutions [11]. Nine adult male
Wistar rats (300±25g) were used. Anesthesia was induced
with 4% halothane in 50%:50% nitrous oxide:oxygen. A
10 min of baseline EEG was recorded including 5 min
washout period to ensure that halothane did not influence the
EEG. Subsequently, 7 min asphyxia was induced by stopping
and disconnecting the ventilator and clamping the tracheal
tube. The duration of cardiac arrest was determined by the
mean arterial blood pressure being below 10 mmHg. Cardio
Pulmonary Resuscitation (CPR) was carried out by chest
compression until return of spontaneous circulation which was
decided a spontaneous the mean arterial blood pressure greater

than 60 mmHg.

The EEG signals were continuously recorded with DATAQ
acquisition package (DATAQ Instruments INC., Akron, OH).
All rats underwent neurological testing at 72 h from the
beginning of recovery. Neurological deficit score (NDS) was
used as the measure for comprehensive neurological outcome
of rats. Since NDS is evaluated quantitatively, which ranges
from 0 (worst) to 80 (best), is servers as an appropriate tool
for relating entropy measures to neurological outcome.

Fig. 2(a)–2(c) show the EEG recordings of the experiment
which were recorded at different stage as follows: at 5 min
(Fig. 2(a)), 50 min (Fig. 2(b)), and 180 min (Fig. 2(c)) from
the start of experiment, respectively. In the figures, the EEG
recordings at different stage show distinct waveforms in both
amplitude and frequency. To reveal the inherent oscillations
of EEGs, the five IMFs of each EEG recording are presented
in Figs. 2(d)–2(f), respectively. The first IMF, here, denoted
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as d1, has highest frequency and frequency component in the
IMFs decreases along with the next IMFs.

For calculating the data-driven subscale entropy, the
following parameters were used: sliding temporal window
length of w = 10 sec, sliding interval of Δ=10 sec, and
M=20. Figs. 3(a) and 3(b) show the time evolutions of the
conventional Shannon entropy and the data-driven subscale
entropy for three rats which have different NDS values,
which implies distinct neurological outcome of rats. In both
plots, after washout around 15 min, entropies of three rats
dramatically fall to approximately zero, followed by rapid
increase from 35-40 min. In the figures, the Shannon entropy
values during recovery are not highly separable for different
animals with good (79) to bad (50) NDS values. On the
other hand, the data-driven subscale entropies in Fig. 3(b)
are consistently separable for the three animals with different
neurological deficit scores. This result indicates that the higher
neurological score, the higher entropy value at the end of the
four hour recovery period.

To assess with a larger sample, the Shannon and data-driven
subscale entropies of nine rats including the previous three rats
were calculated. To demonstrate the entire trend, entropies for
each rat were averaged over selected intervals and the average
of recovery phase (30-240 min from the start of experiment).
The results reveal that the subscale entropy is more closely
correlated to NDS than its counterpart.

IV. CONCLUSION

Here, we demonstrate successful use of a data-driven
decomposition scheme, empirical mode decomposition, which
captures the intrinsic oscillations contained in EEG. Each
mode is shown to cover the clinical EEG frequency bands
of interest. Due to the property of adaptive basis function
derived from original signal itself, EMD is an effective
tool for representing nonstationary signal such as EEG,
whereas other conventional Fourier and wavelet based schemes
need a pre-defined basis functions. In addition, since the
IMFs obtained by EMD have a good de-correlating property,
the resulting information measure is capable of separately
assessing the clinical bands of interest without any need
of external filter. Further, Shannon entropy evaluated from
each IMF is able to reflect the degree of information of
the corresponding oscillatory state. Utilizing a data-driven
(adaptive) decomposition tool, i.e., EMD, it make possible to
capture locally changing feature from fine to coarse scales
of EEG. Following evaluation of entropy using probability
distribution of IMFs at each subscale, it leads an effective
quantitative measure of both spectral and temporal changes in
EEGs. To the end, this study lays the foundation for applying
this novel approach to clinical studies of EEG signals recorded
during comparable episodes of brain injury.
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