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Lamb Waves 1n Plates Subjected to Uniaxial Stresses
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Abstract—On the basis of the theory of nonlinear elasticity, the
effect of homogeneous stress on the propagation of Lamb waves in
an initially isotropic hyperelastic plate is analysed. The equations
governing the propagation of small amplitude waves in the pre-
stressed plate are derived using the theory of small deformations
superimposed on large deformations. By enforcing traction free
boundary conditions at the upper and lower surfaces of the plate,
acoustoelastic dispersion equations for Lamb wave propagation are
obtained, which are solved numerically. Results are given for an
aluminum plate subjected to a range of applied stresses.

Keywords—Acoustoelasticity, dispersion, finite deformation,
lamb waves.

[. INTRODUCTION

HE study of wave propagation problems in pre-stressed

media has been the subject of much research over the past
century. Early works in this area were however restricted to
linear elasticity and the effect of small deformations on the
propagation of small amplitude waves; see, for example, the
pioneering contribution by [1], [2]. It was not until the
development of the finite deformation theory by [3], [4] that
the nonlinear effects of stresses were taken into account.

The acoustoelastic effect is a nonlinear phenomenon that
describes the change in the speed of small amplitude waves in
an elastic body due to the presence of a static pre-stress [5].
The theory of acoustoelasticity for bulk waves was initially
developed by [6] who derived equations relating the wave
velocity to the applied stress for isotropic materials subjected
to uniaxial and hydrostatic loading. Their work was
subsequently generalised by [7] and [8] to materials of
arbitrary crystal symmetry.

Acoustoelasticity is now a well-established procedure
utilised in the non-destructive evaluation of applied and
residual stresses. Its underlying principles have been
comprehensively described in the reviews [9], [10]. Ultrasonic
bulk waves and the acoustoelastic effect have been used over
the past sixty years for the measurement and control of
residual stresses in welded structures and railroad rails, the
tightening of bolts, the assessment of stress levels in bars and
in multi-wire strands as well as the measurement of the stress
distribution near a well bore [11].

The use of guided waves instead of bulk waves to measure
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stresses has received significant attention over the last few
decades due to the long propagation range associated with
guided waves. In particular, guided waves in plate-like
structures, also known as Lamb waves, have been found to be
sensitive to changes in structural properties [12], [13],
temperature and stress [14]. Despite that, there has not been
much research on the theory of acoustoelasticity with regards
to Lamb waves.

The paper [15] provides a fairly comprehensive
acoustoelastic formulation to analyse the effect of uniaxial and
biaxial loading in initially isotropic plates. However, their
work is restricted to infinitesimal initial strains and small
amplitude wave motion such that all the governing equations
are linearised. In the current paper, the theory of
acoustoelasticity is established using the theory of incremental
deformations superimposed on a large deformation, which is
based on the modern treatment of nonlinear elasticity by [16].
The wave propagation is considered as an infinitesimal
deformation which is superimposed onto a finite static
homogeneous deformation.

The paper is structured as follows. In the beginning, the
constitutive equation for an isotropic hyperelastic material
with initial stress and the equations governing incremental
deformations superimposed on a finite deformation are
recalled [17]. These equations are subsequently specialised to
the case of weakly nonlinear elasticity and to uniaxial tension.
The characteristic equations for symmetric and anti-symmetric
Lamb wave modes are then derived by considering the
propagation of homogeneous plane waves and enforcing
traction free boundary conditions at the surfaces of the plate.
Finally, these equations are solved numerically and results are
presented for various applied stresses.

X,

Fig. 1 Alignment of reference coordinate system

II.PROBLEM FORMULATION

Consider an infinite plate of thickness d, composed of an
isotropic hyperelastic material with density p,, in some
unstressed reference configuration. Material points in this
configuration have position vectors X relative to a Cartesian
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coordinate system (X, X,, X3) aligned as shown in Fig. 1. The
origin of the coordinate system lies at the mid-plane of the
plate and the normal to the surface coincides with the X axis.

Suppose the plate is now subjected to a finite static pure
homogeneous strain so that it occupies a new configuration,
referred to as the deformed configuration. The material points
X in the reference configuration then take up the position X in
the deformed configuration, given by

X1 = X1, %2 = X3, %3 = A3X3, (D

where (x;,x,,%3) is the Cartesian coordinate system in the
deformed configuration, which, for convenience, is referred to
the same origin as the reference coordinate system. The
constants 1,1,,4; are the principal stretches of the
deformation.

For isotropic hyperelastic materials, the principal Cauchy
stress required to maintain the plate in its static state of finite
deformation may be expressed in terms of the principal
stretches as

o; =] AW, @)

where W is the strain energy density per unit volume which is
a function of the principal stretches, W; = % , J =M,
i,j € {1,2,3} and there is no sum over repeated indices.

The associated strain-induced anisotropy in the material

response may also be characterised in terms of the principal
stretches as

JAgisj; = AidiWij
LW, — A W;
]‘ﬂoijij:ﬁﬂ?. P#j, A+,
i
JAoyji =~z 57— Aidy, iFj, L EA, 3)
T

1, o
]"AOi]'i]' = E(Alel - ALA]WL] +AiWi)! L ;t], Ai = ).] )
1., _ _ L
JAoijji = E(Ai Wy = AWy = W), i #j, A =2,

where Ag;j, are the (non-zero) components of the
instantaneous elasticity tensor relative to the deformed

. _ 2w . .
configuration, W;; = i,j €{1,2,3}

01,01;
summation is implied by the repetition of indices [16], [17].
The material point at X in the deformed configuration is
now considered to undergo a small dynamic displacement
u(x, t), which is superposed upon the initial finite static
deformation. The material response due to this incremental
deformation may then be described by the incremental
constitutive relation [18]

and again, no

Sopi = Aopiqj E' C))

where S, is the incremental nominal stress tensor. The
incremental equations of motion are given by

9%y, 9%y,
j oo i
Aovia) 5y ax, P o2 )

where p = p,J~! is the density of the material in the deformed
configuration.

In order to study small but finite elastic effects, the strain
energy function is specialised to weakly nonlinear elasticity
[19]. An appropriate form of the strain energy function in this
case is the Murnaghan energy function [20], which is given by

2
W= S =37+ S(h2 -2 -2, +3) +

l m

il 3)3 + - 3)(1% - 3L) + (6)
n

5(11_12"‘13_1),

where A, u are the classical Lamé constants, [,m,n are the
third order elastic constants and Iy, 1,,I; are the principal
invariants of the Right Cauchy-Green deformation tensor.

For definiteness, the strain energy function should be cast in
terms of the principal stretches rather than in terms of the
principal invariants. For this purpose, the relations I, = A2 +
A2+ 22,1, = 2222 + 2342 + 2223, I; = A2237% are substituted in
(6), which yields

W= L322 -+ h G+ 2+ 2t 2
—223-225+3) + i(z% +23+25-3)3+
%(Ai+,1§+/1§—3)(,1§f+,1§+,1§—/1§,1§— )
23— ) + 2 (2 + 25 + 3 — 2305 —233
A4 2222 — 1),

III. UNIAXIAL TENSION

The finite homogeneous deformation is now specialised to
the case of uniaxial tension. Without loss of generality, the
uniaxial Cauchy stress ¢ may be taken to be along the x;
direction, such that oy = ¢ (with o, =053 =0) and the
corresponding principal stretch is A;. Due to the Poisson
effect, the plate contracts laterally in the x, and x5 directions
and by symmetry, A, = A3 [21].

In general, the uniaxial tension is specified in terms of the
nominal stress tensor which relates the axial force in the
current (deformed) configuration to the area in the reference
configuration. The principal components of the nominal stress
can be expressed in terms of the principal stretches as [22]

oW
ar

Sy = VT/I = (®)

For a given uniaxial nominal stress S;;, the principal
stretches can be determined by inverting the relation in (8),
and setting the lateral stresses S,, and S;3 to zero. The
principal Cauchy stresses and the components of the elasticity
tensor can then be found using (2) and (3) respectively.

It is worth noting that, as a result of the uniaxial stress, the
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elastic response of the plate becomes transversely isotropic in
nature. However, the elasticity tensor does not possess the
same symmetry as in the case of classical transversely
isotropic linear elasticity [20].

IV. ACOUSTOELASTIC LAMB WAVES

The propagation of acoustoelastic Lamb waves in the
presence of a homogeneous uniaxial stress field requires the
equation governing incremental motions superimposed on a
finite deformation, as given by (5), to be solved in conjunction
with traction free boundary conditions at the surfaces of the
plate.

Here, the analysis is restricted to the propagation of
homogeneous plane waves along the direction of the applied
uniaxial stress only. It is assumed that the waves are confined
to the x; —x; plane and propagate in the x; direction.
Following [23], the wave motion is modeled as

uj = Ujel(ataxs=ch) j— 123, 9)

where u; is the particle displacement, U; is the amplitude of
the displacement, ¢ is the wavenumber along the x; direction,
« is the ratio of the wavenumbers in the x3 direction to that in
the x; direction and c is the phase velocity in the x; direction.

Substituting (9) into the incremental equations of motion (5)
gives an eigenvalue problem, which can be expressed as

Kij(@)u; =0,i,j =123, (10)
where the components of K;; are given by

K1y = pc? — Agr111 — Agz131@° — a(Agris1 + Aozii1) » (1 1)
Kiz = —=Ao1112 = Aoz1320* — a(Ao1132 + Aozin2)

Ki3 = —Ap1113 — Aoz1330? — a(Ao113s + Aoz1is)

Ka1 = —Aorz11 — Aoazz1@” — @(Aoizs1 + Agza11) »

K32 = pc® — Ap1z12 — Aoazzz®” — @(Aorzaz + Aozz1z) »

Kps = —Ag1z13 — Aoz233@® — @(Aog1233 + Aozz13) »

K31 = —Ap1a11 — Aoazzi @ — @(Aoizzr + Agszin) »

K3z = —Ao1a1z — Aoazzz@” — @(Aoissz + Agssiz) »

- 2 2
K33 = pc? — Ao1z1s — Aozzzz@” — a(Apizss + Aosaz) -

Since the only non-zero components of the elasticity tensor
for a pre-stressed isotropic material are Ag;;;;, Aojijj, Aoijij and
Aoijjirt # j [21], (11) then reduces to

— p2 2
Ky = pc® = Api111 — Apzi312°,

K, =0,

K3 = —a(Api13z + Aoz113),

K;; =0,

Kz2 = pc® — Ag1z12 — Aoz2z2 @’ (12)
K;3=0,

K31 = —a(Aop1zz1 + Aozzir),

K3, =0,

— 2 2
Ki3 = pc® — Agiz13 — Aopzzzza” .

The vanishing of the coefficients K;,, K,1, K3 and K3, in
(12) means that the analysis can be confined to displacements
in the x; and x; directions only as the shear horizontal wave
motions uncouple from the Lamb wave motion [23].
Therefore, (10) can be re-written as

Kijuj =0,i,j €{1,3]}. (13)

For non-trivial solutions to the eigenvalue problem, the
determinant of the coefficient matrix in (13) must be equal to
Zero

|Kij| =0,i,je{1,3}. (14)

This yields a fourth order equation in @ which can be
written as

P,a*+P,a?+P, =0, (15)
where the coefficients P, , P, and P, are given by

Py = Ap3131A03333
P, = —pc?(Agszss + Aoz1z1) + AozzzzAorinn +
Agz131A01313 — Ao1133A01331 — Ao1133A03311 (16)

—Apz113A01331 — Ao3113A03311
_ 2.4 2
Py = p?c* — pc®(Ap1313 + Ao1111) + Ao1111401313 -

The lack of odd power coefficients in (15) means that the
fourth order equation can be reduced to a quadratic equation in
a?. This simplification results in four solutions for a, which
are denoted by a4, q € {1,2,3,4}, with the following properties

Ay = —Qp,Q = —A3. 17)

Using the relations in (12), the displacement ratio Uz to U;
for each of the a, can be expressed as

W, = (pc® — Ap1111 — c"103131‘755) (18)
1 ag(Aor13z + Aoz11z)

The displacement field of the Lamb waves can then be
written in terms of the displacement ratio (18) by using the
principle of superposition

U1 (aq)eif(x1+aqx3—ct) ,

&
I
gl

1

Q
I

(19)
U, (aq)%eif(x1+aqx3—ct) .

&
I
M-

1

<~
Il

Similarly, the stress field can be found by substituting the
displacement field (19) into the incremental stress—
displacement relations (4)
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4
Sosz = Z ifquUl(aq)eif(xﬁaqxg—ct) )
“ (20)

4

So1z = Z ig"quUl(aq)eif(xﬁa,,xg—ct) )
a=1

where
Diq = Aoz + agAozzzsWy,

2y

Dyq = Ap13132 + Ao1331 Wy -

Incorporating the symmetries (17) into (18)-(21) results in
the following restrictions

Wit = =W;,
Dyj+1 = Dyj, 22)
Dajr1 = —=Dyj, j=13.

In order to satisfy the incremental traction free boundary
conditions at the upper and lower surfaces of the plate, the
components of the incremental nominal stress must be set to
Zero

+d

So33 = Sp13 = 0atxz = =. (23)
This leads to four equations which can be expressed as
/D11E1 Dy, E, Dy3E3 D14E4\
. DZlEl DZZEZ D23E3 D24E4
L J— J— J— — -
\DllEl DlZEZ D13E3 D14E4-
DZlE_l DZZE_Z D23E_3 D24E_4 (24)

Uy 0
(Uu\ pifGa—ct) — !Ol
\Uls / [0]
Uy, o)
i£a, — —iga,d
where Uy, = Uy(a,),E, = €*%= and E, = e *%z. For non-
trivial solutions, the determinant of the coefficient matrix in

(24) must be equal to zero

DllEl D12E2 D13E3 D14E4
DZlEl DZZEZ D23E3 D24E4
_ _ _ _|=0 (25)
DllEl D12E2 D13E3 D14E4
DyEy  DpE,  DyEs  DyyEy

Finally, using row-column operations and the symmetries in
(22), (25) can be reduced to two characteristic equations

D11Dy3 cot(yay) — Dy3Dyy cot(yaz) =0,

(26)

D11 D3 tan(yay) — Dy3D,q tan(yas) =0,

corresponding to the symmetric and anti-symmetric Lamb

wave modes respectively, with y =

angular frequency of the wave.

i
2

= “2’—: and w being the

V.SELECTED RESULTS

In this section, the characteristic equations (26) derived in
Section IV are solved numerically using the algorithm
developed by [24]. Dispersion results are presented in terms of
the phase velocity as a function of the frequency-thickness
product for an aluminum plate. The elastic properties of the
plate are listed in Table I and were obtained from the
experimental work of Asay and Guenther [25].

TABLEI
ELASTIC PROPERTIES FOR 6061-T6 ALUMINUM
Material property Value
A 54.308 GPa
u 27.174 GPa
l —281.5 GPa
m —339.0 GPa
n —416.0 GPa
p 2704 kg/m?
8

Phase velocity (mm/ps)
N

2 - -
O 1
0 5 10
@) Frequency-Thickness (MHz-mm)
8 T

N

Phase velocity (mm/ps)
i

0 1
0 5 10
() Frequency-Thickness (MHz-mm)

Fig. 2 (a) Symmetric modes, (b) Anti-symmetric modes, for Lamb
waves propagating in an aluminum plate along the direction of a
uniaxial tension of 50 MPa.

Fig. 2 (a) and (b) show the symmetric and anti-symmetric
Lamb wave modes for the aluminum plate subjected to a
uniaxial tension of 50 MPa. The propagation of the waves is
considered to be along the direction of the applied stress. The
shear horizontal modes are not shown here as they decouple
from the Lamb wave modes. It can be seen that the dispersion
curves obtained are very similar to the ones for an unstressed
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aluminum plate. This is because the phase velocity is not
significantly affected by the applied stress as the
acoustoelastic effect acts only on the third-order elastic
constants [11].

Fig. 3 shows the relative change of the phase velocity of the
fundamental symmetric mode (SO), compared to the
unstressed state, as a function of the level of applied tension.
Although the relative change is quite small, it can be observed
that the change in the phase velocity is negative for all the
values of stress considered. This means that tensile stresses
cause a decrease in the phase velocity of the SO mode, which
is consistent with the fact that the bulk wave speed along the
direction of an applied tensile load is less than the unstressed
wave speed [6]. Furthermore, it can be seen that higher levels
of applied stress result in larger changes in the phase velocity,
particularly in the lower frequency-thickness region. However,
at higher frequency-thickness values, the change in the phase
velocity is relatively constant but is still negative.

0

-0.002

-0.004

ACp/Cp

-0.006

-0.008

Frequency-Thickness (MHz-mm)

Fig. 3 Relative change of phase velocity for the SO mode as a
function of the applied tension

0.02 .
—— A0
oot -
3 S0
&
<
0.00 | _ -
-0.01 :
0 5 10

Frequency-Thickness (MHz-mm)

Fig. 4 Relative change of phase velocity for a uniaxial tension of 100
MPa

The sensitivity of the SO mode and the fundamental anti-
symmetric mode (A0) to an applied stress of 100 MPa is
compared in Fig. 4. At low frequency-thickness values, the AO
mode shows a high sensitivity to the applied stress. However,
the phase velocity decreases rapidly with increasing values of
the frequency-thickness product. Thus, in practice, it would be

preferable to use the SO mode as it maintains a higher
sensitivity over a longer range of frequencies. Moreover, at
higher frequency-thickness values, it can be seen that both the
S0 and A0 modes converge towards the same value of the
relative change of phase velocity. This is not surprising since
both modes converge to the Rayleigh wave velocity at high
frequencies [26].

VI. CONCLUDING REMARKS

In this paper, the problem of Lamb wave propagation in an
initially isotropic elastic plate subjected to a finite
homogeneous deformation is analysed. The governing
equations derived are different to previously published
relations which considered the initial strains to be small.

The theoretical predictions demonstrate that the Lamb wave
phase velocity generally decreases with an increase in the
magnitude of tensile stress. In the low frequency-thickness
region, specifically below 3 MHz-mm, the SO mode shows a
relatively high sensitivity to the applied stress. Combining that
with the ability of Lamb waves to propagate over large
distances, the theoretical equations could form the basis for a
non-destructive stress measurement technique in plate-like
structures.
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