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Time/Temperature-Dependent Finite Element Model
of Laminated Glass Beams

Alena Zemanová, Jan Zeman, Michal Šejnoha

Abstract—The polymer foil used for manufacturing of
laminated glass members behaves in a viscoelastic manner with
temperature dependance. This contribution aims at incorporating
the time/temperature-dependent behavior of interlayer to our earlier
elastic finite element model for laminated glass beams. The model
is based on a refined beam theory: each layer behaves according
to the finite-strain shear deformable formulation by Reissner and
the adjacent layers are connected via the Lagrange multipliers
ensuring the inter-layer compatibility of a laminated unit. The
time/temperature-dependent behavior of the interlayer is accounted
for by the generalized Maxwell model and by the time-temperature
superposition principle due to the Williams, Landel, and Ferry.
The resulting system is solved by the Newton method with
consistent linearization and the viscoelastic response is determined
incrementally by the exponential algorithm. By comparing the model
predictions against available experimental data, we demonstrate that
the proposed formulation is reliable and accurately reproduces the
behavior of the laminated glass units.

Keywords—Laminated glass, finite element method, finite-strain
Reissner model, Lagrange multipliers, generalized Maxwell model,
Williams-Landel-Ferry equation, Newton method.

I. INTRODUCTION

LAMINATED glass units consist of multiple layers
of glass bonded together with a polymer foil, e.g.

made of polyvinyl butyral (PVB). Three facts are important
to understand the mechanical behavior of laminated glass
members:

1) the polymer foil exhibits a time/temperature-dependent
response [1], [2],

2) the ratio between the shear modulus of glass
and polymer foil typically exceeds three orders of
magnitude [3], [4], and Fig. 1,

3) glass structures are very slender and can exhibit
significant geometrically nonlinear behavior [5], [6].

Our recently developed finite element model of elastic
laminated glass beams under finite strain [7], derived from a
refined plate theory by Mau [8], assumes planar cross-sections
of individual layers but not of the whole laminated glass
unit and takes into account the geometrically nonlinear
behavior. Note that geometric nonlinearity is not relevant for
simply supported laminated glass beams, but its effects can
be significant for statistically indeterminate laminated glass
beams and for the majority of laminated glass plates (including
the most common boundary conditions – all edges simply
supported [9], [10]).
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The last important ingredient not implemented in our
model [7] is the time/temperature-dependent response of
the polymer interlayer. It is worth noting that viscoelastic
effects are often neglected in the design practice, because
the full analysis requires additional constitutive parameters
and advanced software tools, which are seldom available for
practitioners. The developments presented in this contribution
aim at providing the tools to achieve such a more accurate
description.

II. BEHAVIOR OF INTERLAYER

The viscoelastic response is highly influenced by the
material used in the interlayer. The present description is
sufficiently general to accommodate all currently used material
variants, although only PVB interlayer is mentioned in this
contribution.

The available experimental data indicate that PVB is a
linearly viscoelastic and temperature-dependent material [3],
[4], [11], [12]. The main engineering property relevant to
the composite behavior of the units is the shear-stress versus
shear-strain characteristics of the interlayer. The shear modulus
of the PVB interlayer G is experimentally determined as a
function of duration of loading and temperature, see Fig. 1.

����� ����� ����� ����	 ��
�� ��
�	 ��
�� ��
��
�����

��
��

��
��

��
��

��
�	

��
��������

����

����

	���

����

����

����

����

������������������ �!"#

$
%�
��
�

�
�
��
�"
�!
&
'
�#

Fig. 1. Shear modulus G as a function of duration of loading and temperature,
after [4].

III. CONSTITUTIVE RELATIONS

A. Assumptions

We start from an overview of constitutive relations for the
polymer interlayer assuming that

1) under isothermal conditions, the material behaves as a
linear elastic solid for volumetric loading and linear
viscoelastic for deviatoric loading,
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2) its deviatoric response can be accurately represented by
the generalized Maxwell model,

3) the effect of temperature can be accounted for by the
time-temperature superposition principle.

B. Volumetric-Deviatoric Split

In order to account for the different response to volumetric
and deviatoric loads, we begin with a decomposition of the
strain and stress tensors

ε(t) =
1

3
εV (t)i+ e(t), (1a)

σ(t) = σm(t)i+ s(t), (1b)

where t denotes the time instant, εm and σm are the mean
strains and stresses, e and s refer to the deviatoric parts, and
i is the unit tensor. Since the volumetric response is elastic,
we have

σm(t) = K (εx(t) + εy(t) + εz(t)) = KεV (t), (2)

where the bulk modulus K is assumed to be constant.
For a smooth strain history e(t) with e(0) = 0, the

deviatoric stress at time t reads, e.g [13, Section 1.2]

s(t) = 2

t∫
0

G(t′)
de

dt′
(t′) dt′, (3)

where G(t′) denotes the shear relaxation modulus completely
characterizing the response of the material.
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Fig. 2. Generalized Maxwell chain consisting of P viscoelastic units and
elastic spring.

Under the second assumption, the shear relaxation modulus
of the generalized Maxwell chain, Fig. 2, can be represented
by the Dirichlet-Prony series [13, page 32]

G(t) = G∞ +
P∑

p=1

Gp(exp
− t

θp )

= G0 −
P∑

p=1

Gp(1− exp
− t

θp ), (4)

where the elastic shear modulus of the chain G0 = G∞ +∑P
p=1 Gp, P is the number of viscoelastic units, Gp denotes

the shear modulus of the p-th unit, θp = ηp/Gp is its relaxation
time related to the viscosity ηp, and G∞ is the shear modulus
of the elastic spring.

C. Incorporation of Temperature Dependence
The temperature dependence is taken into account by the

time-temperature superposition principle, in which the true
time t is replaced by the effective value t/aT adjusted by
the temperature-dependent shift function aT . We employ the
Williams-Landel-Ferry (WLF) equation [14] for this purpose

log aT = − C1(T − T0)

C2 + T − T0
, (5)

where C1 and C2 are material constants, and T and T0 are
the current and reference temperatures, respectively.

D. Incremental Formulation at Material Point
The integral form of constitutive equations (3) is not very

convenient for the numerical implementation, because all
history variables during the whole loading process must be
stored in order to evaluate the integral. Therefore, in the
finite element implementation we will rely on the incremental
approach, namely on the exponential algorithm [15].

To this purpose, we decompose the time interval of interest
〈0; tmax〉 into non-equidistant time instants 0 = t0 < t1 <
t2 < · · · < tN−1 < tN = tmax. The strain history over the
time interval 〈tn; tn+1〉 is assumed to be known, so that

e(tn+1) = e(tn) + Δe, (6)

where Δe denotes the increment of deviatoric strain between
the time instants tn and tn+1.1 An analogous relation holds
also for the deviatoric stresses

s(tn+1) = s(tn) + Δs, (7)

so that, assuming that the deviatoric stress at the beginning
of the time step is known, the goal is to determine the
corresponding increment of the deviatoric stress.

When the strain variation over the time interval of interest
〈tn; tn+1〉 is linear with respect to t, it is well-known that,
e.g. [16, Chapter 10],

Δs = 2ĜΔe+Δŝ, (8)

where Ĝ is the effective shear modulus over the time interval
and Δŝ corresponds to the stress increment under the constant
deformation due to relaxation effects. These quantities are
provided by

Ĝ = G∞ +

P∑
p=1

Gp
aT θp
Δt

(1− exp
− Δt

aT θp ), (9a)

Δŝ =
P∑

p=1

Δŝp =
P∑

p=1

sp(tn)(exp
− Δt

aT θp −1). (9b)

In (9), aT abbreviates the value of the shift factor for a given
time interval (we assume for simplicity that the temperature
remains constant), and sp and Δŝp stand for the values of
the deviatoric stresses and its relaxation in the p-th unit of
the generalized Maxwell chain. Finally, since the volumetric
response is assumed to be elastic, we have

Δσm = KΔεV . (10)

1Note that, in order to simplify the notation as much as possible, we omit
the subscript related to the current time step for incremental variables.
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IV. INCREMENTAL VISCOELASTICITY FOR BEAM THEORY

A. Incremental Formulation at Cross-Section

The relations (8)–(10) fully specify the incremental behavior
for general three-dimensional stress and strain states. In order
to derive the incremental constitutive equations for beams,
we first recall that the only non-zero stress components are
Δσx, consequently Δsx, and Δτxz = Δsxz . We express the
incremental formula of the internal forces at the cross-section
level,

ΔNx(x) = ÊAΔεx,0(x) + ΔN̂x(x), (11a)

ΔMy(x) = ÊIyΔκy(x) + ΔM̂y(x), (11b)

ΔVz(x) = kĜAΔγxz(x) + ΔV̂z(x), (11c)

where x specifies the position of the cross-section, Δε0,x is the
time increment of the centerline strain, Δκy is the increment
of the pseudo-curvature, A is the cross-section area, Iy the
second moment of area, k the shear correction factor, and
Ĝ the effective shear modulus from (8). The effective Young
modulus Ê and the effective Poisson ratio ν̂ are computed
under the assumption of constant bulk modulus K. In (11),
we utilized the fact that the effective material constants are
the same for the whole layer, recall (9a).

We complement these relations with the update of history
variables at the level of individual components of the Maxwell
chain. In order to avoid excessive notation, we omit the
dependence on x in the remainder of this section, as we
implicitly assume that the derived relations hold for a given
cross-section located at x. The increment of the normal stress
for the p-th unit Δsx,p can be decomposed into a constant part
and a part depending linearly on the position within a given
cross-section z

Δsx,p(z) = ΔsNx,p +ΔsMx,pz. (12)

In analogy to (9b) we write

ΔŝNx =
P∑

p=1

ΔŝNx,p =
P∑

p=1

sNx,p(tn)
(
exp

− Δt
aT θp −1

)
, (13a)

ΔŝMx =
P∑

p=1

ΔŝMx,p =
P∑

p=1

sMx,p(tn)
(
exp

− Δt
aT θp −1

)
, (13b)

Δτ̂xz =

P∑
p=1

Δτ̂xz,p =

P∑
p=1

τxz,p(tn)
(
exp

− Δt
aT θp −1

)
. (13c)

These terms can be used to express the relaxation of the
internal forces over the time increment, needed in (11), in
the explicit form

ΔN̂x = (1 + ν̂)AΔŝNx , (14a)

ΔM̂y = (1 + ν̂)IyΔŝMx , (14b)

ΔV̂z = kAΔτ̂xz. (14c)

B. Solution Procedure

We extended the geometrically nonlinear solver from [7] to
the incremental viscoelasticity formulation. The goal is to find

the time increment of nodal displacements

r(tn+1) = r(tn) + Δr, (15)

but due to the geometrically nonlinear effects, the increment
must be found by the Newton method. Assuming that the k-th
iterate kΔr is known, we express the (k+1)-th correction in
the form

k+1Δr = kΔr + k+1δr, (16)

where k+1δr and the vector of Lagrange multipliers k+1λ are
determined from the linearized system[
kK̂ kCT

kC 0

] [
k+1δr
k+1λ

]
= −

[
kf̂ int − f ext(tn+1) +

kΔf̂ int
kc

]
.

(17)

The terms
kK̂ = K̂t(r(tn) +

kΔr) +Kλ(r(tn) +
kΔr, kλ), (18a)

kC = ∇c(r(tn) +
kΔr), (18b)

kf̂ int = f̂ int(r(tn) +
kΔr), (18c)

kc = c(r(tn) +
kΔr), (18d)

follow directly from the relations derived in [7]; the notation
K̂t and f̂ int is used to emphasize that these quantities
are determined using the effective parameters Ĝ and Ê. In
addition, we have to account for the additional nodal forces
arising from the relaxation effects

kΔf̂ int = Δf̂ int(r(tn) +
kΔr). (19)

These are obtained by the assembly of the element
contributions

Δf̂ int,e(re) = Δf̂
N

int,e(re) + Δf̂
V

int,e(re) + Δf̂
M

int,e(re),
(20)

where the individual components are evaluated from the stress
increments under the constant deformation due to relaxation
effects (13), see [17, Section 6.3].

Finally, we summarize the one-step problem for the
geometrically nonlinear formulation in Algorithm 1. The
termination criteria for the iterative algorithm are set according
to the two residuals, cf. [7],

kη1 =
‖kf̂ int +

kΔf̂ int − f ext(tn+1) +
kCTkλ‖2

max (‖f ext(tn+1)‖2, 1) , (21)

kη2 =
‖kc‖2

mini h(i)
, (22)

where h(i) stands for thicknesses of individual layers with
i = 1, 2, 3.

V. VALIDATION OF MODEL WITH VISCOELASTIC
BEHAVIOR OF INTERLAYER

Experimental data for the validation of the finite element
model are reproduced from [18] and [4]. The mechanical
properties of glass were determined from a static bending test,
yielding the Young modulus E = 72 GPa and the Poisson
ratio ν = 0.23. The experimental viscoelastic characterization
of PVB was made by subjecting specimens of thickness
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Algorithm 1: Conceptual implementation of one-step
exponential algorithm for geometrically nonlinear
laminated beams
Data: load f ext(tn+1), displacements r(tn), and

deviatoric stresses [sNx,p,e, s
M
x,p,e, τxz,p,e]

ne ,P
e=1,p=1 at

tn, and tolerances ε1 and ε2
Result: displacements r(tn+1), deviatoric stresses

[sNx,p,e, s
M
x,p,e, τxz,p,e]

ne ,P
e=1,p=1

k ← 0, 0λ ← 0, 0Δr ← 0
assemble kf̂ int,

kΔf̂ int,
kc, and kC from (18) and (19)

while (kη1 > ε1) or (kη2 > ε2) do
assemble kK̂
solve for (k+1δr, k+1λ) from (17)
k+1Δr ← kΔr + k+1δr
assemble k+1f̂ int,

k+1Δf̂ int,
k+1c, and k+1C

from (18) and (19)
k ← k + 1

r(tn+1) ← r(tn) +
k+1Δr

update

sNx,p,e ← sNx,p,e +ΔsNx,p,e

sMx,p,e ← sMx,p,e +ΔsMx,p,e

τxz,p,e ← τxz,p,e +Δτxz,p,e

with e = 1, 2, . . . , ne and p = 1, 2, . . . , P

0.38 mm to tensile relaxation tests with the duration of 10 min.
The PVB was tested at different temperatures from -15 ◦C
to 50 ◦C in order to apply the time-temperature-superposition
principle for construction of the PVB master curve. The
resulting material constants of the generalized Maxwell chain,
as provided in [4], are summarized in Table I, and the
parameters of the Williams-Landel-Ferry (WLF) equation (5)
are set to C1 = 12.6, C2 = 74.46, and T0 = 20 ◦C. The bulk
modulus of the interlayer is considered as K = 2 GPa.

TABLE I
GENERALIZED MAXWELL SERIES DESCRIPTION OF THE SHEAR

RELAXATION MODULUS FOR PVB (AFTER [4]), G∞ = 1.9454×10−4 GPA

p θp [s] Gp [GPa]
1 2.3660×10−7 9.9482×10−2

2 2.2643×10−6 9.0802×10−2

3 2.1667×10−5 7.4140×10−2

4 2.0733×10−4 5.0772×10−2

5 1.9839×10−3 5.7856×10−2

6 1.8984×10−2 2.9055×10−2

7 1.8165×10−1 1.7601×10−2

8 1.7382×100 3.0802×10−3

9 1.6633×101 1.2001×10−3

10 1.5916×102 1.1523×10−4

11 1.5230×103 1.8237×10−4

12 1.4573×104 4.1645×10−5

13 1.3945×105 2.2405×10−4

Several experimental tests were carried out in [18] for four
types of laminated glass beams under uniform distributed
loading. Seven concentrated loads were used to reproduce such
loading conditions and the deflections at the mid-span were
measured using a laser sensor. These experimental data are

utilized here to validate the finite element model for laminated
glass beams.

The reported results correspond to the discretization of the
structure with 50 elements per layer for the beam. As for the
loading history, it was parametrized by the relative magnitude
function

m(t) =

{
105t for t ≤ 10−5s,
1 otherwise,

(23)

simulating a rapid loading reported in [4]. The time steps
in the incremental algorithms were distributed uniformly in
the logarithmic scale, in particular 6 time steps were used
to discretize the interval 〈10−6; 10−5〉, whereas the interval
〈10−5; 105〉 was decomposed into 24 time steps.

In Fig. 3–6, we present the experimental values of deflection
together with the prediction of the proposed beam model
with viscoelastic behavior of the interlayer. These data are

� � � � �

���

���

���

�

���

���

	
�
�
��
�

���

��	

��������

�
��

��
� 

�!
"�

��
�

�

�#$�%��

&����

Fig. 3. Comparison of maximum deflections of a simply supported beam
with a non-symmetric layout of layers with thicknesses glass layers 4 mm
and 8 mm and PVB layer 0.38 mm, the length of 1 m, and the width of
0.1 m, under the uniform distributed loading of intensity fz = 38.25 N/m
at the temperature T = 17.4 ◦C. (EXP: experimental data, FEM: response of
finite element model of laminated glass beam in terms of deflections.)

complemented with the values of deflections corresponding to
the linear monolithic (with thickness equal to the combined
thickness of glass layers) and layered (an assembly of
independent glass layers) simply-supported beams under the
constant load, in order to provide the upper and lower bounds.

The results confirm that the viscoelastic models of laminated
glass beams reproduce the experimental data reasonably well
with an error under approximately 7% in the central deflection
(Fig. 3–5) and under 10% in the deflection at the mid-point
of one of the spans (Fig. 6). Such an accuracy is consistent
with the results of the static test reported in [7]. We attribute
this difference mainly to the temperature variation during the
experiment, since it follows from the WLF equation that the
interlayer material is highly sensitive to temperature changes,
and the only information about the temperature is its mean
value during the experiment.
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Fig. 4. Comparison of maximum deflections of a simply supported beam with
a non-symmetric layout of layers with thicknesses of glass layers 4 mm and
8 mm and PVB layer 0.76 mm, the length of 1 m, and the width b = 0.1 m,
under the uniform distributed loading of intensity fz = 38.25 N/m at the
temperature T = 18.3 ◦C.(EXP: experimental data, FEM: response of finite
element model of laminated glass beam in terms of deflections.)
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Fig. 5. Comparison of maximum deflections of a simply supported beam
with a symmetric layout of layers with thicknesses of glass layers 3 mm
and PVB layer 0.38 mm, the total length of 1 m, and the width of 0.1 m,
under the uniform distributed loading of intensity fz = 19.7 N/m at the
temperature T = 17.5 ◦C. (EXP: experimental data, FEM: response of finite
element model of laminated glass beam in terms of deflections.)

It is also worth noting that both the upper and lower
bounds display significantly larger errors in deflections,
which renders their prediction unsafe (monolithic bound) or
uneconomical (layered bound).

VI. PARAMETRIC STUDY ON VISCOELASTIC BEHAVIOR OF
INTERLAYER

The validation of the viscoelastic finite element models was
performed in the previous section for statically determinate
units that exhibit a negligible difference between the
geometrically linear and nonlinear response. Therefore, the
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Fig. 6. Comparison of deflection at the mid-point of one of the spans of
a two-span simply supported beam with a symmetric layout of layers with
thicknesses of glass layers 4 mm and PVB layer 0.38 mm, length of 1.4 m,
the spans of 0.7 m, and the width of 0.1 m, under the uniform distributed
loading of intensity fz = 94.22 N/m at the temperature T = 17.8 ◦C. (EXP:
experimental data, FEM: response of finite element model of laminated glass
beam in terms of deflections.)

purpose of the present section is to complement these
results with a study on structures for which the effect of
geometric nonlinearity is significant. Attention is also paid
to the effect of temperature variation, accounted for by the
Williams–Landel–Ferry formula (5). The material parameters
for glass layers and PVB interlayer are set in the same way
as in Section V, and so is the loading history, recall (23).

A laminated glass beam with both ends fixed is presented.
The structure was subjected to a distributed load with the peak
intensity fz = 10 Nm−1 (so that the maximum deflections
remain below 3, 000/250 = 12 mm in the nonlinear case),
and was discretized with 50 elements per layer. Response of
the structures is investigated for three constant temperatures
0 ◦C, 25 ◦C, and 50 ◦C. The resulting evolution of the central
deflection with time is plotted in Fig. 7–8 for both linear
and nonlinear models. In addition to the standard upper and
lower bounds, provided by the geometrically linear monolithic
and layered approximations, we also provided the elastic
response corresponding to the interlayer shear modulus set to
the maximum elastic value G0 and the long-term limit G∞,
recall (4).

The results are in full agreement with the outcomes
presented in [1], namely that the laminated units exposed to
temperatures around 0 ◦C effectively behave as the monolithic
ones, which also holds when the elastic shear modulus is
used. For temperatures exceeding 50 ◦C, the response almost
immediately reaches the limit set by G∞, but this value is still
sufficient to ensure the interaction of the glass layers. For the
intermediate temperatures, corresponding to room conditions,
the viscoelastic effects become relevant, and the deflections
interpolate the G0–G∞ bounds. It is interesting to note that
these bounds are too far apart in the linear case (the relative
difference in deflections is 135%), but for the geometrically
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Fig. 7. Central deflections of a fixed-end beam with a symmetric layout of
layers with thicknesses of glass layers 3 mm and PVB layer 0.76 mm, the
length of 3 m, and width of 0.15 m, under the uniform distributed loading
of intensity fz = 10 N/m at the temperature T = 0 ◦C, 25 ◦C, and 50 ◦C.
(FEM L: response of geometrically linear finite element model of laminated
glass beam in terms of deflections.)
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Fig. 8. Central deflections of a fixed-end beam with a symmetric layout of
layers with thicknesses of glass layers 3 mm and PVB layer 0.76 mm, the
length of 3 m, and width of 0.15 m, under the uniform distributed loading of
intensity fz = 10 N/m at the temperature T = 0 ◦C, 25 ◦C, and 50 ◦C. (FEM
NL: response of geometrically nonlinear finite element model of laminated
glass beam in terms of deflections.)
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nonlinear model the difference remains below 30%.

VII. CONCLUSION

In conclusion, we conjecture on the basis of the performed
validation and parametric study that:

1) The viscoelastic finite element model of laminated glass
beams reproduces the experimental data reasonably well.

2) Both upper and lower bounds display significantly larger
errors in deflections, which renders their prediction
unsafe (monolithic bound) or uneconomical (layered
bound).

3) The findings of parametric study highlight the need
for geometrically nonlinear analyzes of laminated glass
structures, in view of their rational design.
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[2] T. Serafinavičiusa, J. Lebeta, C. Loutera, T. Lenkimasc, and
A. Kuranovasb, “Long-term laminated glass four point bending test
with PVB, EVA and SG interlayers at different temperatures,” Procedia
Engineering, vol. 57, pp. 996–1004, 2013.

[3] S. J. Bennison, A. Jagota, and C. A. Smith, “Fracture of Glass/Poly(vinyl
butyral) (Butacite R©) laminates in biaxial flexure,” Journal of the
American Ceramic Society, vol. 82, no. 7, pp. 1761–1770, 1999.
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Alena Zemanová is a postdoctoral researcher
at the Department of Mechanics, Faculty of
Civil Engineering, Czech Technical University
in Prague. Her research activities lie within
numerical homogenization of plate structures and
numerical modeling of laminated structures. E-mail:
zemanova.alena@gmail.com.

Jan Zeman is an Associate Professor at the
Department of Mechanics, Faculty of Civil
Engineering, Czech Technical University in Prague.
His research activities lie within analysis of
heterogeneous materials and structures and applied
mathematical modeling in engineering sciences.
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