
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:7, 2015

1649


Abstract—Edge is variation of brightness in an image. Edge

detection is useful in many application areas such as finding forests,
rivers from a satellite image, detecting broken bone in a medical
image etc. The paper discusses about finding edge of multiple aerial
images in parallel. The proposed work tested on 38 images 37
colored and one monochrome image. The time taken to process N
images in parallel is equivalent to time taken to process 1 image in
sequential. Message Passing Interface (MPI) and Open Computing
Language (OpenCL) is used to achieve task and pixel level
parallelism respectively.

Keywords— Edge detection, multicore, GPU, openCL, MPI.

I. INTRODUCTION

A. Edge Detection

DGE is sharp variation of brightness in an image. Edge
detection is a preprocessing step in an image analysis

application. There are many sequential version of edge
detection algorithm. Edge can be detected in OpenCL.
OpenCL provides pixel level parallelism by creating as many
threads as number of pixels in an image. Thus OpenCL
provides facility for parallelization of edge detection of single
image. Proposed work uses MPI for creating as many
processes as number of images. Each MPI process calls
OpenCL kernel code achieving image level parallelism.

B. MPI

 MPI is a parallel library which is used with language C. It
is suitable for message passing parallel computer. In message
passing model Applications are co-operating processes with
local variables. Some of the most commonly used API in MPI
are listed in the Table I.

TABLE I

API’S IN MPI

API NAME PURPOSE

MPI_Init(int *argc, char ***argv); Initialize the MPI Environment

MPI_Comm_rank(Communicator,&rank)
Returns number of tasks in the
communicator

MPI_Finalize() Finalize the MPI Environment

In MPI each process will have its local memory and there is

no shared memory. MPI is a Multiple Instruction stream
Multiple Data stream (MIMD) system. MPI is tightly coupled
system. MPI is a popular message passing interface used for
communication in parallel computers. It follows the MIMD

Prakash K Aithal is with the Manipal Institute of Technology, Manipal

University, Manipal, India (phone: 9535829916; e-mail:
prakash@manipal.edu).

U Dinesh Acharya and Rajesh Gopakumar are with the Manipal Institute
of Technology, Manipal University, Manipal, India (e-mail:
dinesh.acharya@manipal.edu, rajesh.g@manipal.edu).

(multiple instruction multiple data) type of parallelism. In this
type of parallelism, the processors may operate at different
speeds and therefore such systems are asynchronous. Thus, the
synchronization of the processes in an MIMD system becomes
a critical problem. However, MPI contains several
functionalities in its interface that provide synchronization and
communication between a set of processes. It also allows a
number of processes to be created on several nodes which can
operate in a parallel manner. In the project, a number of MPI
processes are started so that each process can read in an image
and extract its features.

There exist MPI I/O operations which can control file reads
and writes so that the processes can all access a common file
and read from it or write to it in a synchronous manner
without overwriting each other’s values. The feature vectors
that have been obtained and created by each MPI process is
written synchronously to a file using these MPI I/O operations
for synchronization.

C. OpenCL

 OpenCL is another parallel library used with C language. It
is a Single Instruction stream Multiple Data stream (SIMD)
system. Following are the steps to be followed for any of the
OpenCL Application.
Step1. Discover and initialize the platforms: To discover and

initialize the platform clGetPlatformIds(…) is called
twice. At the first call number of available platforms
are discovered. Enough memory is allocated to the
platforms then second call to the same function
initializes the platform.

Step2. Discover and initialize the devices: This step is similar
to discovering and initializing platforms the
clGetDeviceIds(…) function is called twice. One call is
to discover the number of devices. Allocate sufficient
memory to the devices and then second call initializes
the devices.

Step3. Create a context: A context is the abstract container
that resides on host. It manages the memory objects
and keeps track of the kernels that are created for each
device.

Step4. Create a command queue: One command queue is
created per device.

Step5. Create device buffers or images: This step creates the
memory object which OpenCL can understand.
Memory objects can be either large arrays called
buffers or images.

Step6. Write host data to device buffers: Devices can execute
the data which are either buffers or images.

Step7. Create and compile the program
Step8. Create the kernel
Step9. Set the kernel arguments

Detecting the Edge of Multiple Images in Parallel
Prakash K. Aithal, U. Dinesh Acharya, Rajesh Gopakumar

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:7, 2015

1650

Step10. Configure the work-item structure: Work item will be
of one dimension for arrays, two dimensions for
matrices and three dimension for images.

Step11. Enqueue the kernel for execution: Execute the kernel
on devices.

Step12. Read the output buffer back to the host: Transfer the
data from device to the host.

Step13. Release OpenCL resources: All the resources used in
the OpenCL program must be released.

OpenCL is a framework for writing programs that can
execute across heterogeneous platforms such as CPUs and
GPUs. It provides parallel computing using task-based and
data-based parallelism. Heterogeneous systems include special
massively parallel accelerators that can be considered as math
co-processors such as GPUs. A program for hybrid
architecture can be split into a CPU code (called a host code)
and a code for the GPU (called a kernel code).

OpenCL views a computing system as consisting of a
number of compute devices. These compute devices may be
CPUs or GPUs and are all attached to a host processor. A
compute device consists of many individual processing
elements and a single kernel execution can run on all or many
of the processing elements in parallel.

On submission of the kernel by the host to the device, an N
dimensional index space is created. Each kernel instance is
created at each of the coordinates of this index space. This
instance is called a kernel work item. Kernel work groups each
contain an equal number of work items and each does its
computations on a separate compute node. Each work item is
assigned a unique global ID and a local ID that is unique to the
work group it is in. Each work group is also assigned a unique
work group ID. The assignment of IDs is to be able to identify
each and every work item separately.

The OpenCL memory model guarantees a relaxed memory
consistency between devices. This means that different work
items may see a different view of the global memory as
computation progresses. Synchronization is thus required to
ensure data consistency within the work items in a work
group. There are 4 different types of memory that a work item
can access:

1) Global Memory

This memory region is device wide and changes made in
this region and visible to all the work items.

2) Local Memory

Each OpenCL device has an associated local memory. This
is the memory that is the closest to the OpenCL processing
element. That is, if a work item modifies the local memory,
the change is made visible to all the work items in the work
group but cannot be seen outside the work group.

3) Constant Memory

 This is the region of memory that remains constant
throughout the execution time of the kernel and is initialized
by the host device

4) Private Memory

 In this region of memory is used to allocate all the local
variables in the kernel code. Any modifications done to this
memory are not visible to other work items.

The detailed description of steps can be found in [1].

II. LITERATURE SURVEY

Edges characterize boundaries and are therefore a problem
of fundamental importance in image processing. Image Edge
detection significantly reduces the amount of data and filters
out useless information, while preserving the important
structural properties in an image. Since edge detection is in the
forefront of image processing for object detection, it is crucial
to have a good understanding of edge detection algorithms [2].
Mohammed Baydoun et al. have proposed parallel approach
for range filtering, sharpening and histogram equalization [3].
Prakash K. Aithal et al. have proposed parallel edge detection
of coloured images using MPI by slicing the image
horizontally and feeding it to multiple processes in parallel.
The edge detected image is then combined using image
reconstruction algorithm [4]. Varun Sanduja et al. have
proposed edge detection based on FPGA which uses Sobel
filter. Sobel filter needs to be applied in x and y direction [5].
Gradient based edge detection, Laplacian based edge detection
using different filters can be found in [2].

The remaining paper is organized as follows Section III
discusses sequential edge detection approach. Section IV
discusses edge detection in parallel using MPI. Section V
explains edge detection using OpenCL. Section VI elaborates
edge detection of multiple images in parallel with the help of
combination of OpenCL and MPI. Section VII presents the
results.

III. SEQUENTIAL EDGE DETECTION USING LAPLACIAN OF

GAUSSIAN FILTER

In sequential edge detection algorithm, convolution matrix
is found by applying Laplacian of Gaussian filter on image
matrix. If Sobel or Prewitt has two filters, one in X-direction
and other in Y-direction. Laplacian of Gaussian filter has the
advantage that only one filter is sufficient thus reducing the
cost of computation by the factor of 2. A 5x5 Laplacian of
Gaussian filter is depicted in Fig. 1.

Fig. 1 5 x 5 Laplacian of Gaussian filter

Sequential edge detection algorithm operates upon one

complete image using convolution matrix. The given image is
multiplied with the filter to generate convolution matrix.
Different filters can be applied to sharpen the image, blur the
image, emboss and detect the edge [4].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:7, 2015

1651

IV. EDGE DETECTION THROUGH MPI

An Image is cut horizontally and fed to the different
processes. Each process finds the edge of sliced image. Image
is reconstructed by combining edges detected by each of the
processes. Edge detection through MPI can be done as follows
first slice the image horizontally and feed each slice to a
process in parallel. Apply filter and get the convolution
matrix. Combine the convolution matrix or reconstruct the
image using the algorithm given in [4].

V. EDGE DETECTION THROUGH OPENCL

Edge of an image is calculated by pixel level processing of
an image. Kernel code runs on GPU devices. The steps to
identify edge are listed below.
1. Read the image
2. Convert 24 bit RGB to 32 bit RGBA format.
3. Create space for bufferSourceImage using

CreateImage2D API (Note: Width field will be
ImageWidth and Height field will be ImageHeight).

4. Create space for bufferOutputImage using
CreateImage2D API. (Note: Width field will be
ImageWidth-filterWidth+1 and Height field will be
ImageHeight-filterHeight+1).

5. Create Space for bufferFilter using clCreateBuffer API.
6. Write the image onto bufferSourceImage using

clEnqueueWriteImage.(Note: Origin field is set to {0,0,0}
and region field is set to {ImageWidth,ImageHeight,1})

7. Write the filter onto device using
8. clEnqueueWriteBuffer.
9. Create Sampler
10. Set the Global Work Size to {ImageWidth, ImageHeight}
11. Read Back the edge detected image from device to host

using clEnqueueReadImage. (Note: Origin field is set to
{0,0,0} and region field is set to { ImageWidth-
filterWidth+1, ImageHeight-filterHeight+1,1})

12. Store the edge image and edges in separate file.
The OpenCL kernel code in Fig. 2 multiplies the given

image with Laplacian of Gaussian filter to generate the
convolution matrix which gives the edge-detected image.

VI. EDGE DETECTION THROUGH COMBINATION OF OPENCL

AND MPI

MPI can run multiple processes simultaneously. Now those
processes can be OpenCL kernel code. Thus the proposed
paper achieves pixel level parallelism on multiple images in
parallel. The speedup gained is N where N is the number of
processes created or number of images in this case. The steps
are as follows.
1) Create MPI Environment.
2) Create image number of processes.
3) Each process reads one image.
4) Each process contains OpenCL host code.
5) Each Process calls the OpenCL kernel.
6) Each Process stores the edge detected image.

The edge detected image values are also stored in excel files
for further processing.

Fig. 2 OpenCL Kernel Code

VII. RESULTS
TABLE II

LINEAR RELATIONSHIP BETWEEN NUMBER OF PROCESSES AND NUMBER OF

IMAGES WITH RESPECT TO EXECUTION TIME

Number of images Number of Processes Time Taken

1 1 0.0001 sec

2 2 0.0001 sec

3 3 0.0001 sec

4 4 0.0001 sec

5 5 0.0001 sec

6 6 0.0001 sec

7 7 0.0001 sec

From Table II, it can be observed that a speedup of N is

achieved.

__kernel void
EdgeDetect(__read_only image2d_t
sourceImage, __write_only
image2d_t outputImage, int rows,int
cols, __const float* filter,int
filterWidth,sampler_t sampler)
 {
int column=get_global_id(0);
int row=get_global_id(1);
int halfWidth=(int)(filterWidth/2);
float4 sum={0.0f,0.0f,0.0f,0.f};

int filterIdx=0;
int2 coords;
for(int i=-
halfWidth;i<=halfWidth;i++)
{
 coords.y=row+i;
 for(int j=-
halfWidth;j<=halfWidth;j++)
 {
 coords.x=column+j;
 float4 pixel;

pixel=read_imagef(sourceImage,sampl
er,coords);

sum.x+=pixel.x*filter[filterIdx++];
 }
 }
 if(row<rows && column<cols)
 {
 coords.x=column;
 coords.y=row;

write_imagef(outputImage,coords,sum
);

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:7, 2015

1652

TABLE III
COMPARISON OF SEQUENTIAL VERSUS PARALLEL ALGORITHM

Mode of Execution Time Taken

Sequential 3 Sec

Parallel Using OpenCL 0.0001 Sec

From Table III, it is clear that pixel level parallelism is

more efficient than its sequential counterpart. Image is taken
from Sample Imagery List of GeoEye Inc. (formerly Orbital
Imaging Corporation or ORBIMAGE) which is an American
commercial satellite imagery company. The original image is
depicted in Fig. 3. The edge detected image is depicted in Fig.
4.

Fig. 3 Original geospatial image (Image is taken from Sample
Imagery List of GeoEye Inc. (formerly Orbital Imaging Corporation
or ORBIMAGE) which is an American commercial satellite imagery

company

Fig. 4 Edge Detected geospatial image

VIII. CONCLUSION

The proposed work discussed the advantage of multicore
and GPU implementation through MPI and OpenCL

respectively. Edge detection of multiple images with pixel
level parallelism is much faster than sequential counterpart.
The above preprocessing step can be incorporated in
parallelizing other image processing applications.

REFERENCES
[1] Benedict R. Gaster,Lee Howes, David Kaeli, Perhaad Mistry, Dana

Schaa Heterogeneous Computing with OpenCLMorgan Kaufmann 2012.
[2] Raman Maini,Himanshu Aggarwal Study and Comparison of Various

Image Edge Detection Techniques. International Journal of Image
Processing (IJIP), Volume (3), Issue (1).

[3] Mohammed Baydoun, Mohamad Adnan Al-Alaoui, Rony Ferzli.
Parallel Edge Detection Based on Digital Differentiator Approximation
In: The 3rd International Conference on Communications and
Information Technology (ICCIT-2013): Wireless Communications and
Signal Processing, Beirut pp 371-375, 2013.

[4] Prakash K. Aithal, Rajesh G., Dinesh U. Acharya, MPI based edge
detection of coloured image using laplacian of gaussian filter In,
International Journal of Computer Application, August 2014.

[5] Varun Sanduja, Rajeev Patial Sobel Edge Detection using Parallel
Architecture based on FPGA International Journal of Applied
Information Systems (IJAIS) – ISSN: 2249-0868 Foundation of
Computer Science FCS, New York, USA Volume 3– No.4, July 2012 –
www.ijais.org.

