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Abstract—In the Hierarchical Temporal Memory (HTM) paradigm
the effect of overlap between inputs on the activation of columns in
the spatial pooler is studied. Numerical results suggest that similar
inputs are represented by similar sets of columns and dissimilar inputs
are represented by dissimilar sets of columns. It is shown that the
spatial pooler produces these results under certain conditions for
the connectivity and proximal thresholds. Following the discussion
of the initialization of parameters for the thresholds, corresponding
qualitative arguments about the learning dynamics of the spatial
pooler are discussed.
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I. INTRODUCTION

I INSPIRED by the brain and based on the importance
of time-dependent behavior and prediction, a machine

learning paradigm, Hierarchical Temporal Memory (HTM)
[3], enables real-time learning of sequences and demonstrates
predictive capabilities. Prior works have explored the use of
HTM for pattern recognition [5], speech-based learning tasks
[9], land use recognition [7], content-based image retrieval
[1], and stock trading [2]. One prior paper has compared the
performance of the first phase of the HTM framework, the
spatial pooler, on greyscale natural images with other coding
schemes [8]. However, the mathematics of HTM has not yet
been studied widely. Here we provide a mathematical and
probabilistic framework to examine the behavior of the spatial
pooler upon initialization before any inputs are introduced.

As outlined in the HTM white paper [3], the spatial pooling
phase is the first step of the framework. It is a powerful online
learning mechanism that demonstrates efficient dimensionality
reduction and adaptation. The spatial pooler comprises a set
of columns, analogous to biological cortical columns, the
fundamental units of computation in the neocortex [6]. For
clarity in our implementation of the spatial pooler, italicized
“column” refers to a computational unit in the spatial pooler,
while “column” refers to a column of a matrix. Each column
has a distinct proximal dendrite segment, which is a set of
synapses connected to specific entries of the input vectors.
Each synapse has an associated permanence value, the
magnitude of which decides whether the synapse is connected
or not. Note that in our implementation of the spatial pooler
each input to the spatial pooler is a binary vector of 0’s and
1’s.

The spatial pooler is responsible for converting each
binary input vector into an internal representation called
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a sparse distributed representation (SDR), which is a set
of columns that are activated by the input vector. These
SDR’s must preserve the similarities and differences between
inputs. In order to group similar inputs and distinguish
between differing inputs, the spatial pooler should exhibit
the following behavior: similar inputs map to similar SDR’s,
and dissimilar inputs map to dissimilar SDR’s. The quality
of these SDR’s is critical to the later predictive and temporal
phases of the HTM paradigm, which potentially predict and
recognize sequences of SDR’s.

We consider inputs to be either overlapping or
non-overlapping. We use the terms “overlapping inputs”
to denote multiple inputs whose binary representations share
at least one on-bit and “non-overlapping inputs” to denote
inputs whose binary representations share no on-bits. In this
work we study the specific initial conditions for the spatial
pooler parameters in order to achieve the desired behavior
of grouping overlapping inputs into similar sets of active
columns and non-overlapping inputs into different sets of
active columns before any learning occurs. Achieving this
desired behavior contributes to a better understanding of the
spatial pooler, which is an important step in laying a solid
foundation for success in the temporal phase of HTM.

II. FORMULATION / NOTATION

In the following sections, we use the notation below to
describe the status and behavior of the spatial pooler; this
notation is more fully outlined in the Appendix.

The spatial pooler is responsible for providing SDR’s for
a set of inputs. The spatial pooler updates its information
through changes in synaptic activity. In our representation
this synaptic activity is stored in a permanence matrix, P .
Each row of P is a vector of permanence values that is
associated with a certain column in the spatial pooler. For
example, the permanence value at Pij denotes the strength of
the connection between the i-th column and the j-th bit of the
binary input vector. Another matrix, called the connectivity
matrix, a binary version of P , is denoted by C and can be
described by:

C = P > τC (1)

where τC is the synaptic threshold, and this notation indicates
that entry Cij is set to 1 if Pij > τC and 0 otherwise.
Permanence values that exceed the synaptic threshold result in
the synapse being connected, and all lower permanence values
result in the synapse not being connected. Binary values in the
connectivity matrix reflect this behavior. We use Cj to denote
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the connectivity of the j-th column in the spatial pooler, i.e.
the j-th row of the connectivity matrix C.

If we consider the spatial pooler to be a function that
maps input vectors to SDR’s, the function can be formally
characterized as the following:

ov = Cx (2)
c = ov > τo (3)

where x is the binary input vector, ov is the vector of
overlap scores between the input vector x and C, and τo
is the proximal threshold. Here c is the SDR of x, and the
proximal threshold τo determines whether there is sufficient
overlap between an input x and a particular column Cj

to activate Cj . For all calculations in this paper, boosting
and inhibition as discussed in [3] are not considered in
order to make the mathematical formulation more tractable.
Boosting and inhibition are not critical to our work because
our computations are performed upon initialization of the
permanence and connectivity matrices.

The overlap calculation controls column activity and hence
gates synaptic changes. To understand the range of inputs that
cause column activity, a reconstruction vector, r, is defined by:

r = CT ∗ c. (4)

We note that the input will select a column whose
reconstruction is closest in a least squares sense if the input
and reconstruction vectors have a fixed number of 1’s. The
square error between the input and the reconstruction is given
by:

error2 = (x− r)2 (5)

= x2 − 2xr + r2 (6)
= λ1 − 2xr + λ2 (7)

where λ1 and λ2 correspond to the number of 1’s in the
input, x, and reconstruction, r, respectively, which are fixed.
Certain encoding schemes ensure the number of 1’s is fixed
for the input. For classification problems where the candidates
have been learned by the columns, the spatial pooler will
minimize the error for the selection. The activation of a
column with maximum overlap, which corresponds to xr,
ensures the minimization of the error between the input and
the reconstruction.

III. NON-OVERLAPPING INPUTS

A. Expectation Value of Overlap

In order to gain insight into the selection of initial τo and
τC parameters to ensure two non-overlapping inputs activate
different columns, the calculations discussed in this section
can be performed. This insight is essential to the success of
the spatial pooling phase by ensuring the spatial pooler does
not pool dissimilar inputs together.

We can begin with two non-overlapping inputs, xa and xb.
Let these inputs be encoded to be column vectors with length L
and comprising d active bits, and assume that every possible
input is equally likely. Note that there are certain encoding
schemes that can ensure the number of on-bits in the inputs

stays constant. Assume xa activates the j-th column, Cj , that
is, the inner product of xa and Cj is greater than τo. These
relationships can be described by:

〈xa, xb〉 = 0 (8)
〈xa, Cj〉 = ovac (9)

where ovac is the overlap score between input xa and
column Cj , which is a row of the connectivity matrix
in our formulation. Beginning with a uniformly distributed
permanence matrix with values that range from 0 to 1, a
threshold, τC , can be used to convert the permanence matrix
to a binary connectivity matrix. τC is in [0, 1] so the density
of the connectivity matrix can be described by:

100 ∗ (1− τC)% are 1 (10)
100 ∗ τC% are 0. (11)

Note that the position of the d active bits in the input
does not matter, since we assume every input is equally
likely and the entries of Cj are independently and identically
distributed. Thus, without loss of generality we assume xa =
[1, . . . , 1, 0, . . . , 0], with d 1’s at the beginning. To simplify
notation let us use event Z to denote the conditions 〈xa, xb〉 =
0, 〈xa, Cj〉 = ovac, and xa = [1, . . . , 1, 0, . . . , 0]. We use En

as a dummy variable to denote this conditional expectation,
En = E[

∑L
k=1 x

b
kCjk|Z].

Using the linearity of expectation, we can compute the
expected value for the overlap between xb and Cj given Z.
This gives:

En =

L∑
k=1

E[xb
kCjk|Z]. (12)

Since the entries of xb and Cj are in {0, 1}, only when xb

and Cj are 1 will their values contribute to the expected value
resulting in:

En =
L∑

k=1

P[xb
k = 1, Cjk = 1|Z]. (13)

Since xa and xb are non-overlapping, we know the first d
entries of xb are 0 so:

En =
L∑

k=d+1

P[xb
k = 1, Cjk = 1|Z]. (14)

Using Bayes’ theorem we compute:

En =
L∑

k=d+1

P[xb
k = 1|Cjk = 1, Z] ∗ P[Cjk = 1|Z]. (15)

Considering all possible xb, the probability for each entry of
xb to be 1 is d

L−d resulting in:

En =
L∑

k=d+1

d

L− d
∗ P[Cjk = 1|Z] (16)

= (L− d) ∗ d

L− d
∗ P[Cjk = 1|Z] (17)

= d ∗ P[Cjk = 1|Z]. (18)



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:5, 2015

1277

The threshold for connectivity is τC so the expected number of
1’s within a row of the connectivity matrix is L(1− τC). The
number of 1’s in the first d entries of column Cj is equal to
ovac because we assumed xa = [1, . . . , 1, 0, . . . , 0]. Therefore,
the number of 1’s left for the column to overlap with xb is
equal to L(1− τC)− ovac. This results in:

En = d ∗ L(1− τC)− ovac

L− d
. (19)

Dissimilar inputs should have dissimilar representations so the
desired behavior is for two non-overlapping inputs to activate
different columns. In order to achieve this desired behavior,
the proximal threshold τo can provide a loose upper bound
for the expected overlap score between xb and Cj . We can
substitute ovac by τo, since xb should not activate Cj , as long
as xa has already activated Cj by surpassing the minimum
threshold τo. We then find:

d ∗ L(1− τC)− τo
L− d

≤ τo (20)

1− τC ≤ 1

d
τo. (21)

This preceding relationship provides general guidelines for
the initial selection of τC and τo values that on average will
prohibit input xb from activating column Cj , given that xa

already activates Cj .
We can support this relationship numerically using our

Matlab implementation of the spatial pooler. In the following
example, we begin with a uniformly random permanence
matrix using 256 columns with L = 1024 and d = 30.
In (Fig. 1) we see that by varying the permanence and
connectivity thresholds, there is a clear dividing line where
the number of shared active columns drastically decreases to
zero. The linear boundary between the high and low parts
of the surface corresponding to large and small numbers of
shared active columns respectively coincides with the linear
relationship we obtain through the calculation of the expected
value of the overlap between xb and Cj . From our results in
equation (21), we would expect the slope of the boundary to
be − 1

d = − 1
30 . Our numerical example yields a steeper slope

of approximately − 1
18 . Since the expected value calculation

only provides a loose bound, this numerical example supports
the linear relationship we obtain in (21). This indicates that
using (21) can in practice provide guidelines to differentiate
the columns activated by non-overlapping inputs.

B. Variance

The computation of the variance for the expected overlap
between xb and Cj contributes to a better understanding of
the overall distribution of the overlap between input xb and
column Cj as a random variable. We use Vn to denote the
variance: Vn = V ar[

∑L
k=1 x

b
kCjk|Z]. Using the definition of

variance we compute:

Vn = E[(
L∑

k=1

xb
kCjk)

2|Z]− E2
n. (22)

Since we already computed the expected value from the
previous section, we must only compute the first half of the
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Fig. 1: Numerical example of the effect of the permanence and
connectivity thresholds on the number of shared active bits for
two inputs.

previous line resulting in:

E[(

L∑
k=1

xb
kCjk)

2|Z] = En +
∑
m �=n

E[xb
mCjmxb

nCjn|Z]. (23)

We use Emn to denote the second half of the previous line.
Note that only when xb

m, Cjm, xb
n, Cjn are all 1’s will their

values contribute to the expected value. Since xa and xb are
non-overlapping, m,n > d, and we calculate:

Emn =
∑

m �=n; m,n>d

P[xb
m = Cjm = xb

n = Cjn = 1|Z] (24)

= 2 ∗
∑

m<n; m,n>d

P[xb
m = Cjm = xb

n = Cjn = 1|Z]

(25)

= 2 ∗
∑

m<n; m,n>d

d

L− d

d− 1

L− d− 1
(26)

∗ L(1− τC)− ovac

L− d
∗ L(1− τC)− ovac − 1

L− d− 1
.

(27)

We use α to denote L(1− τC) − ovac, so the expression for
the expected value becomes αd

L−d accordingly resulting in:

Emn = 2 ∗
(
L− d

2

)
d

L− d
∗ d− 1

L− d− 1
∗ α

L− d
∗ α− 1

L− d− 1
(28)

=
d(d− 1)α(α− 1)

(L− d)(L− d− 1)
. (29)

Plugging Emn into the previous computation of variance and
using the result of the expected value from the previous
section, we have:

Vn =
d(d− 1)α(α− 1)

(L− d)(L− d− 1)
+

αd

L− d
− (

αd

L− d
)2. (30)

Now that we have both the expression of the expected value
and the variance of the overlap score between the input xb and
column Cj , we can use the normal distribution to approximate
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the probability distribution of the overlap between xb and Cj .
For certain sets of parameters the normal approximation can
provide a good estimate of the desired lower bound for τo.
A detailed numerical example is provided later in this paper
after the closed form formula for the probability distribution
of ovbc is introduced (Fig. 3).

C. Probabilistic View

A more computationally difficult method to examine the
behavior of non-overlapping inputs is to compute the entire
probability distribution directly for the overlap between the
input xb and column Cj . This method provides more accurate
guidelines than the expected value and variance calculations
to select threshold values that ensure the probability of two
non-overlapping inputs activating the same column is very
small. With the same assumptions used for the expected value
and variance calculations, the closed form formula for the
probability of the overlap between xb and Cj being ovbc is:(

d

ovbc

)(
L− 2d

α− ovbc

)
/

(
L− d

α

)
. (31)

Since the first d positions of input xa are 1’s, the denominator
is the total number of ways to arrange the 1’s left for Cj in
the remaining L − d spots. In the numerator the first term
is the number of possibilities to arrange the ovbc 1’s that
Cj can overlap with xb. The second term in the numerator
is the number of arrangements for the 1’s left for Cj after
overlapping with both xa and xb. We can obtain the entire
probability distribution enumerating ovbc from 0 to d. With the
entire distribution, we can get a lower bound for τo using the
cumulative distribution for any set of parameters. For example,
suppose L = 1000, d = 30, and α = 180 (τC = 0.80, ovac =
20). If we would like the probability of xb activating Cj to
be smaller than ε = 10−3, τo = 14 is sufficient (Table I).

In the non-overlapping case the binomial distribution
Bin(n, p) can serve as an even better approximation than
the normal distribution (Fig. 3a). It is helpful to compute the
binomial distribution because it is a discrete distribution and
the probability distribution of ovbc is also discrete. The first
parameter of the binomial distribution, n, the number of trials,
is d, since each trial can be considered as the overlap of one
on-bit. The second parameter, p, the probability of success in
each trial, can be determined by the fact that the expected
value of the binomial distribution equals the product of the
first and second parameters. Thus, we can divide d by the
expected value αd

L−d computed previously to obtain this second
parameter p = α

L−d . Note that due to the Law of Large
Numbers, as d, the number of on-bits, increases, both the
normal approximation and Bin(d, α

L−d ) converge to the actual
probability distribution given by the closed form formula in
(31).

D. Numerical Experiments

We experiment with a variety of values for L, d, ovac, τC , ε,
τo to gain intuition about the interaction of these parameters
(Table I). The parameters ε, d, and τC have a particularly
significant impact on the lower bound of τo. However, L and

ovac do not affect the lower bound of τo as significantly.
The ε value controls the likelihood that two non-overlapping

inputs will activate the same column. As ε decreases and
we desire a smaller probability of two inputs activating the
same column, the proximal threshold increases to ensure this
behavior.

The number of on-bits in the input vector is controlled by
the scheme chosen to encode the input. The encoding scheme
should be considered carefully because as d, the number of
on-bits in the input vector, increases, the likelihood that the
input will activate a certain column increases. This results in
a higher chance of two non-overlapping inputs activating the
same column. Therefore, the proximal threshold, τo, must have
a larger value in order for the spatial pooler to distinguish
between the non-overlapping inputs.

The connectivity threshold, τC controls the number of 1’s
in the connectivity matrix, C. As τC increases, the number of
1’s in the connectivity matrix decreases. This results in there
being a smaller likelihood that an input activates any particular
column. Because an input is less likely to activate a certain
column, a smaller proximal threshold suffices to distinguish
non-overlapping inputs.

TABLE I:
EFFECTS OF PARAMETERS ON τo

L d ovac τC ε τo

1000 30 20 0.80 10−3 14
950 30 20 0.80 10−3 14
900 30 20 0.80 10−3 14
850 30 20 0.80 10−3 14
800 30 20 0.80 10−3 13
800 33 20 0.80 10−3 14
800 36 20 0.80 10−3 15
800 39 20 0.80 10−3 16
800 42 20 0.80 10−3 17
800 42 23 0.80 10−3 17
800 42 26 0.80 10−3 17
800 42 29 0.80 10−3 16
800 42 32 0.80 10−3 16
800 42 32 0.82 10−3 15
800 42 32 0.84 10−3 14
800 42 32 0.86 10−3 12
800 42 32 0.88 10−3 11
800 42 32 0.88 10−4 12
800 42 32 0.88 10−5 14
800 42 32 0.88 10−6 15

E. Qualitative Behavior

The calculations of expected overlap and variance between
an input and a particular column in the previous sections
provide insight into the selection of parameters for the
initialization of the permanence matrix. These initial selections
of parameters affect the learning dynamics of the spatial pooler
as new inputs are introduced. Here the learning rule for the
spatial pooler is introduced.

Once the overlap, ov, has been calculated and the active
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and inactive columns for a particular input are computed, the
learning rule described in [3] follows Hebbian learning [4].
Within this framework, as each new input is introduced, P is
only updated for the active columns associated with the new
input. This learning rule can be described mathematically, and
for each active column Ci the entries of P are given by:

Pij =

{
min(1, Pij + δP ) : j ∈ jactive
max(0, Pij − δP ) : j /∈ jactive

where jactive is the set of on-bits in the binary input vector.
The entries in the permanence matrix are incremented only
when both the column is active and the corresponding entry
of the input vector is 1. The entries in the permanence
matrix are decremented only when the column is active and
the corresponding entry of the input vector is 0. All other
permanence values are left unchanged. The parameter δP
controls how much the permanence matrix is updated with
each input and thus also controls the rate at which a column
can learn inputs.

With the learning rule described, several observations and
qualitative arguments about non-overlapping inputs can be
made. First, the spatial pooler can be initialized in such
a way that non-overlapping inputs are highly unlikely to
activate the same column. Therefore, if all the inputs are
non-overlapping, there must be a greater number of columns
than the number of inputs for there to be any possibility that
each non-overlapping input will activate a different column.
Moreover, the learning rate, δP , merely controls how quickly
the permanence matrix becomes saturated and reaches its
minimum or maximum permanence values. As long as the
spatial pooler continues to see the same inputs repeatedly
and no novel inputs are introduced, the permanence values
will tend toward the maximum and minimum values, and the
inputs will become more differentiated over time until the
corresponding entries of the permanence matrix reach these
maximum or minimum values.

IV. OVERLAPPING INPUTS

A. Statistics of the overlap score

Now we consider the case where xa and xb share a
certain number of active bits. We denote this sharing of active
bits by ovab. Using the parameters given in the previous
non-overlapping section, we can examine how the value of
ovab affects the probability of the overlapping inputs activating
the same column. The computation of the expected value
and the variance in the overlapping case is a generalization
of the computation in the non-overlapping case. Thus, we
summarize the computations, and most of the computations
employ strategies utilized in the non-overlapping case.

B. Expected value

We make the same assumptions as in the non-overlapping
case, except that the overlapping case requires one additional
parameter: the amount of overlap between inputs xa and xb,
denoted by ovab. To simplify notation let us use event Z ′ to
denote the conditions 〈xa, xb〉 = ovab, 〈xa, Cj〉 = ovac, and
xa = [1, . . . , 1, 0, . . . , 0]. Here we compute the expected value

for the overlap between xb and Cj given that xa overlaps with
xb by ovab and xa overlaps with Cj by ovac. We use Eo to
denote this expected value:

Eo = E[
L∑

k=1

xb
kCjk|Z ′] =

L∑
k=1

E[xb
kCjk|Z ′] (32)

=
L∑

k=1

P[xb
k = Cjk = 1|Z ′]. (33)

Since xa and xb overlap by ovab, we know xb has ovab
active bits in its first d bits. For each of these active bits,
the probability that the corresponding entry in Cj is also 1 is
ovac
d . For the active bits of xb that are not in the first d bits,

the probability of these bits being 1 is L(1−τC)−ovac
L−d . Using

these probabilities, our expected value calculation becomes:

Eo = ovab ∗ ovac

d
+ (d− ovab) ∗ L(1− τC)− ovac

L− d
(34)

= ovab ∗ ovac

d
+ (d− ovab) ∗ α

L− d
. (35)

C. Variance

We can compute the variance for the overlapping case. We
denote the variance with Vo:

Vo = V ar[
L∑

k=1

xb
kCjk|Z ′] = E[(

L∑
k=1

xb
kCjk)

2|Z ′]− E2
o . (36)

Since we already computed the expected value from the
previous section, we only need to compute the first half of
the previous line resulting in:

E[(

L∑
k=1

xb
kCjk)

2|Z ′] = Eo +
∑
m �=n

E[xb
mCjmxb

nCjn|Z ′]. (37)

We denote the second half of the previous line with E′
mn.

Note that only when xb
m, Cjm, xb

n, Cjn are all 1’s will their
values contribute to the expected value. We calculate:

E′
mn =

∑
m �=n

P[xb
m = Cjm = xb

n = Cjn = 1|Z ′] (38)

= 2 ∗
∑
m<n

P[xb
m = Cjm = xb

n = Cjn = 1|Z ′] (39)

= 2 ∗ (
∑

1≤m<n≤d

P[xb
m = Cjm = xb

n = Cjn = 1|Z ′]

(40)

+
∑

d+1≤m<n≤L

P[xb
m = Cjm = xb

n = Cjn = 1|Z ′]

(41)

+
∑

1≤m≤d<n≤L

P[xb
m = Cjm = xb

n = Cjn = 1|Z ′]).

(42)
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Substituting α for L(1− t)− ovac gives:

E′
mn = 2[

(
d

2

)
ovab

d

ovab − 1

d− 1

ovac

d

ovac − 1

d− 1
(43)

+

(
L− d

2

)
d− ovab

L− d

d− ovab − 1

L− d− 1

α

L− d

α− 1

L− d− 1
(44)

+ d(L− d)
ovab

d

d− ovab

L− d

ovac

d

α

L− d
] (45)

(46)

E′
mn =

ovab(ovab − 1)ovac(ovac − 1)

d(d− 1)
(47)

+
(d− ovab)(d− ovab − 1)α(α− 1)

(L− d)(L− d− 1)
(48)

+
2ovab(d− ovab)ovacα

d(L− d)
. (49)

We can plug the expression above into the expression for the
variance resulting in:

Vo = E[(

L∑
k=1

xb
kCjk)

2|Z ′]− E2
o (50)

Vo =
ovab(ovab − 1)ovac(ovac − 1)

d(d− 1)
(51)

+
(d− ovab)(d− ovab − 1)α(α− 1)

(L− d)(L− d− 1)
(52)

+
2ovab(d− ovab)ovacα

d(L− d)
+ Eo − E2

o . (53)

For the overlapping case the normal approximation given
by the expected value and variance can provide a good
approximation for the probability distribution (Fig. 3b).
However, we can still provide a closed form formula for the
probability density of ovbc.

D. Probabilistic View

Just as in the non-overlapping case, we can compute the
probability distribution for the overlapping case. In addition
to the assumptions made in the non-overlapping calculations,
we consider an additional assumption: the overlap between
inputs xa and xb is ovab. The probability that the overlap
score between input xb and Cj is ovbc is:

ovbc∑
k=0

�[every combinatorial term is well defined]

∗
(
ovab
k

)(
d−ovab
ovac−k

)
(

d
ovac

) ∗
(
d−ovab
ovbc−k

)(
L−2d+ovab
α−ovbc+k

)
(
L−d
α

) . (54)

Note that the terms in combinatorial expressions must be
non-negative integers. Thus, we need to include the indicator
that every combinatorial number is well defined in the first
place.

Assume that xa = [1, . . . , 1, 0, . . . , 0], so the number of
active bits in the first d bits of xb must be exactly ovab.
Therefore, the number of active bits in the rest of xb is
d − ovab. We can separate a given ovbc into the first d bits

and the rest L−d bits. Thus, we can use k to increment from
0 to ovbc to enumerate all the possible cases of separation.
For each case we have independent parts of possibility. The
first combinatorial term of (54) is the probability that the
overlap between xb and Cj in the first d bits is k, and the
second combinatorial term of (54) is the probability that the
overlap in the rest L− d bits is ovbc − k bits.

Note that the probabilistic computation for the overlapping
case is much more costly compared to the approximation
given by the expected value and variance since combinatorial
numbers grow extremely fast. The binomial approximation is
not as accurate as the normal approximation in the overlapping
case, but it does correlate strongly with the actual probability
distribution (Fig. 3b). However, for small parameters we can
still compute the entire probability distribution for the sake
of high accuracy. Now that we know how to compute the
probability distribution for ovbc, we can use the guidelines
for the selection of τo computed from the non-overlapping
case (21) to calculate for each ovab value the probability that
xb will activate Cj , i.e. the probability that ovbc ≥ τo. This
computation allows us to examine further how the probability
of xb activating Cj varies with respect to the change in ovab,
the overlap between the two inputs.

V. DISCUSSION OF OVERLAPPING AND
NON-OVERLAPPING CALCULATIONS

We can examine the relationships between the overlaps for
the two inputs and a single column. Given that xa activates
Cj , if there is a significant amount of overlap between the
on-bits for two inputs xa and xb, there is a high probability
that input xb will also activate column Cj . However, if xa and
xb barely overlap, it is very unlikely for xb to activate Cj (Fig.
2).
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Fig. 2: Relationship between overlap values for two inputs and
a single column.

In previous sections we use expected value and variance
calculations to examine the behavior of non-overlapping and
overlapping inputs upon initialization of the spatial pooler.
In (31) and (54) we also provide closed form formulas for
the overlap between input xb and column Cj given that xa
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activates Cj . We can compute a numerical example to show
how good of an approximation the normal and binomial
distributions are for both the non-overlapping and overlapping
cases using the following selection of parameters: L = 1024,
τC = 0.95, and d = 30 (Fig. 3). The probability distribution
of ovbc is computed using the closed form formulas given in
(31) and (54) in the probabilistic view sections. The variable
ρnormal denotes the correlation between the actual distribution
and the normal approximation, and ρbinomial denotes the
correlation between the actual distribution and the binomial
distribution. As is shown in (Fig. 3), for the selected L and d
values, L = 1024 and d = 30, the binomial approximation is
better than the normal approximation in the non-overlapping
case (ρbinomial > ρnormal). However, in the overlapping case
the normal distribution is very close to the actual probability
distribution and serves as a better approximation than the
binomial approximation (ρnormal > ρbinomial). For small
parameter values, we can still compute the distribution using
the closed form formulas for probability given in (31) and (54)
to obtain full accuracy.
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Fig. 3: Comparison of exact, normal, and binomial
distributions for indicated parameters.

VI. INCREMENTAL LEARNING

Once the permanence and connectivity matrices are
initialized, the learning phase can begin as inputs are

introduced to the spatial pooler. As the spatial pooler
is repeatedly exposed to inputs, synapses form or break
and the permanences of the columns start to move away
from the threshold because of the Hebbian learning rule
[4]. Moving beyond our examination of the interaction
between non-overlapping inputs and the spatial pooler upon
initialization, we can make observations about this interaction
during the learning phase. Characterizing the behavior of
the spatial pooler for any arbitrary input is exceptionally
challenging. Making a number of assumptions about the
inputs, we describe the behavior for two very specific
examples, one non-overlapping and one overlapping.

If upon initialization the set of parameters is carefully
chosen such that each non-overlapping input activates a
different column, this behavior will continue during the
learning phase. Suppose input xa activates column Ci and no
other input activates Ci upon initialization. Once the learning
starts, if xa is presented to the spatial pooler, it will readily
activate Ci, and the overlap between xa and Ci will increase
incrementally. However, if another non-overlapping input xb is
presented to the spatial pooler, xb will not activate Ci. Thus,
the incremental learning process only increases the overlap
between xa and Ci while all the other inputs will not have any
effect on Ci. Therefore, xa will continue to activate Ci during
the learning phase. We can extend this reasoning to all other
non-overlapping inputs and columns to ensure non-overlapping
inputs continue to activate different columns.

We can also make qualitative arguments about the behavior
of overlapping inputs during the learning phase. Let us
examine a specific example for two overlapping inputs.
Suppose we have two inputs, xa and xb, which have sufficient
overlap to activate the same column Ci, and suppose the
permanence values corresponding to this column are far
enough away from the connectivity threshold, τC , that one
update will not result in a change of the connectivity matrix.
From our experiments we find the order and frequency with
which inputs are introduced to the spatial pooler affects the
final state of the permanence matrix. Therefore, in this specific
example we control the order and frequency of inputs. If xa

and xb are the only inputs and they are presented to the spatial
pooler repeatedly the same number of times in an alternating
fashion, Ci will reinforce the common parts of xa and xb. If
xa is presented to the spatial pooler during the learning phase
Ci will be activated. The entries in the permanence matrix that
are associated with Ci and correspond to the on-bits in xa will
be incremented, while the entries of P that are associated with
Ci and are unique to xb will be decremented. Similarly, when
xb is presented, Ci will be activated. The entries of P that are
associated with Ci and correspond to the on-bits in xb will be
incremented, while the entries that are associated with Ci and
are unique to xa will be decremented.

Since we assume xa and xb are presented an equal number
of times in an alternating manner, we consider one iteration
to be the presentation of xa and xb once. For each iteration
we analyze the individual bits of the inputs separately and
enumerate all the possibilities for each entry of the inputs and
column:
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TABLE II:
EFFECT OF LEARNING ON P AND C

xa
j xb

j Cij before Cij after Pij

1 1 0 1 ↑
1 0 0 0 —
0 1 0 0 —
0 0 0 0 ↓
1 1 1 1 ↑
1 0 1 1 —
0 1 1 1 —
0 0 1 0 ↓

where xa
j and xb

j denote the j-th position of the input vectors
xa and xb respectively, Cij before is the connectivity between
Ci and the j-th bit of the input vectors before any learning
has occurred, and Cij after is the same connectivity after
sufficient learning. Here sufficient indicates the connectivity of
the column no longer changes as inputs xa and xb continue to
be presented to the spatial pooler. For example, if the j-th bit of
both inputs is 1, regardless of the initial value of Cij , Cij will
become 1 eventually. This is because Pij will be incremented
every time when xa or xb activates Ci. If the j-th bit of only
one of the inputs is 1, Cij will stay the same, because Pij

will be incremented for one input and decremented for the
other input. Finally, if the j-th bit of both inputs is 0, Pij

will be decremented for every input and Cij will become 0.
We use “↑” to indicate that the interaction between xa, xb,
and Cij before results in Pij being incremented by δP , “↓”
to indicate that the interaction between xa, xb, and Cij before
results in Pij being decremented by δP , and “—” to indicate
Pij does not change due to the the interaction between xa,
xb, and Cij .

We can regard (Table II) as a truth table for our specific
example, and the corresponding Boolean expression is:

(α ∧ β) ∨ (α ∧ γ) ∨ (β ∧ γ), (55)

where α denotes xa
j , β denotes xb

j , and γ denotes Cij before.
The symmetric structure of the Boolean expression implies
that both the inputs and the column have the same influence
on determining the final state of Cij after learning. This truth
table (Table II) shows the behavior of the connectivity matrix
after learning for this specific example having made a number
of underlying assumptions. Future work is needed to develop
a deeper understanding of how the order and frequency of
inputs affects how the spatial pooler learns inputs.

VII. CONCLUSION

We show that with the careful selection of parameters the
spatial pooler maps distinct inputs into distinct SDR’s as
indicated by the column activity. We also provide a variety
of probabilistic mathematical tools to explore the interaction
of overlapping and non-overlapping inputs with the spatial
pooler. Finally, assuming the careful selection of parameters at
initialization, we can make observations and arguments about
the learning dynamics for both non-overlapping inputs and
overlapping inputs.

APPENDIX

A. Matrix/scalar operations

If A is a matrix and β is a value, then A > β denotes
the matrix of conditions Aij > β. Also max{β,A} denotes
the matrix B with entries Bij ← max{β,Aij}, and A ← β
denotes the assignment operation Aij ← β.

B. Indicators

For condition e, let

�e� ←
{
1 if e
0 otherwise

If e is a matrix of conditions, then �e� is the corresponding
0-1 matrix.

C. Variables

TABLE III:
EXPLANATION OF VARIABLES

math type initialization purpose
x n-vec input signal
n integer number of inputs
m integer number of columns
τC real 0-1 convert P to C
τo real proximal threshold
δP real increment for P based on c

and x
P m× n U [0, 1] permanence values
C m× n �P ≥ τC� large permanence values
ov m-vec col activity, stimulated by

input x via C
c m-vec ov entries larger than τo
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