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 
Abstract—Hypersonic flows around spatial vehicles during their 

reentry phase in planetary atmospheres are characterized by intense 
aerothermodynamics phenomena. The aim of this work is to analyze 
high temperature flows around an axisymmetric blunt body taking 
into account chemical and vibrational non-equilibrium for air mixture 
species and the no slip condition at the wall. For this purpose, the 
Navier-Stokes equations system is resolved by the finite volume 
methodology to determine the flow parameters around the 
axisymmetric blunt body especially at the stagnation point and in the 
boundary layer along the wall of the blunt body. The code allows the 
capture of shock wave before a blunt body placed in hypersonic free 
stream. The numerical technique uses the Flux Vector Splitting 
method of Van Leer. CFL coefficient and mesh size level are selected 
to ensure the numerical convergence.  
 

Keywords—Hypersonic flow, viscous flow, chemical kinetic, 
dissociation, finite volumes, frozen and non-equilibrium flow. 

I. INTRODUCTION 

HIS article presents a calculation of viscous flow around 
an axisymmetric blunt body. In the present work, we 

employ a numerical technique to simulate the reactive viscous 
supersonic flow and variation of parameters in the boundary 
layer thickness on the body surface. The gas considered is the 
air in a standard state composed of 21% of O2and79% of 
N2which is supposed a perfect gas. The free stream parameters 

are 170 Pascal and 295K corresponding at the altitude of 45 
Km. The flight Mach number is 10. In this case we take into 
account of the nonequilibrium vibration and dissociation. 

The nonlinear partial derivative equations system which 
governs this flow is solved by an explicit unsteady numerical 
scheme [1] by the finite volume method [2] for reactive flow 
[3]. It is clear that the stationary solution obtained depends on 
the size of the mesh used in the numerical Discretization [4]. 
We tested convergence for an inviscid flow by using a refining 
of grid which will enable us to have the exact solution.  

II.  GOVERNING OF EQUATIONS 

In a Newtonian fluid the viscous stresses are proportional to 
the rates of deformation. The three-dimensional form of 
Newton’s law of viscosity for compressible flows involves 
two constants of proportionality, then first dynamic viscosity	ߤ 
to relate stresses to linear deformations and the second 
viscosity	ߣ to relate stresses to the volumetric deformation. 
The viscous stress components are: 
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Not much is known about the second viscosity	ߣ, because 

its effect is small in practice. For gases a good working 
approximation can be obtained by taking the value ߣ ൌ െ

ଶ

ଷ
 ߤ

[5]. 
 The Navier-stokes equations in a flux-vector formulation in 
Cartesian coordinate system are given by 
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where	ܹ, ,ܧ ,ܨ  and Ω are vectors given by ܩ
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The heat flux vector ݍ has three components	ݍ௫,ݍ௬ and ݍ௭ 

given by the Fourier’s law of heat conduction relates the heat 
flux to the local temperature gradient. So 
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where ݇ denotes the coefficient of thermal conductivity, it is 
function of Prandtl number	ܲݎ ൌ 0.75, viscosity and specific 
heat.  
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The energy ݁ per unit of mass is such as:  
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݄௙
଴ is the enthalpy of formation of the species ݏ in ݆/݇݃: 
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The pressure of the mixture is obtained by the equation of 

state:  
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The temperature of the mixture is calculated by using the 

energy equation (4). The source term of the chemical equation 
of evolution of species ݏ evaluated through:  

 
߱௖௦ ൌ ௦ܯ 	∑ ሺ߭௦ᇱᇱ െ ߭௦ᇱሻ	ܬ௥

௥
௥ୀଵ      (7) 

 
where: 

௥ܬ       ൌ ௙ܭ ∏ ቀ
ఘೞ
ெೞ
ቁ
జೞᇲ

௦ െ ௕ܭ ∏ ቀ
ఘೞ
ெೞ
ቁ
జೞᇲᇲ

௦        (8) 

 
߭௦ᇱ  and ߭௦ᇱᇱ are the stoichiometric coefficients of the reactants 
and products of species ݏ respectively for each chemical 
reaction ሺݎሻ such as:  

∑ ߭௦ᇱ	ܣ௦				௦

௄೑,௄್
ሯልልሰ	∑ ߭௦ᇱᇱ	ܣ௦				௦         (9) 

Both forward and backward reaction rates are represented 
by ܭ௙ and	ܭ௕. An empirically expression for the forward 
reaction rate ܭ௙ may be written as 
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In this equation, the temperature of translation-rotation ܶ is 

replaced by the geometric average between ܶ and ௩ܶ (ܶଵି௤. ௩ܶ
௤ሻ 

with ݍ ൌ 0.3 taking into account the coupling between 
vibration and dissociation ሺܦܸܥሻ according to the Park model 
[3]. 

For the backward reaction rate 	ܭ௕, it is function of the 
equilibrium constant ܭ௘௤  
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The constants	ܣ, ݊ and the temperature characteristic of 

dissociation ௗܶ are given by Gardiner model [3]. The 
equilibrium constant of the chemical reaction is given like a 
polynomial of the 4௧௛ degree:  
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where	ݖ ൌ 10000 ܶ⁄ , and the coefficients ܿ଴ through ܿସ are 
provided for each reaction [3]. 

The term of energy production of vibration ߱௩௦ is such as:  
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ሺݏݒ݁ ௩ܶሻ is the energy at the temperature of vibration ௩ܶ and 
݁௩௦ሺܶሻ is the equilibrium energy of vibration at the temperature 
ܶ of translation-rotation expressed as: 
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 ௩ is the temperatureߠ is the constant of a particular gas and  ݎ
characteristic of vibration for each molecule. In the present 
work, we take: 
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The time characteristic of vibration of a species s in the 

mixture	߬௦ is function of the temperature, the pressure and the 
molar fractions	 ௜ܺ. It can be calculated as [3]: 
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where ݏ ൌ ܱଶ, ଶܰ and		݅ ൌ ܱଶ, ଶܰ, ܱܰ, ܱ,ܰ. ߬௦,௜ is the time 
characteristic of vibration of the species s in a mixture 
containing species i. We have:  
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Experiments for binary exchanges, made it possible to 
evaluate vibrational relaxation time of ܱଶ in monatomic 
oxygen [8] and of ଶܰ in ܱ [9]. The pressure ݌	is in 
atmospheres and ߬ in seconds. 
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To determine the relaxation times which are not given by 

the experimental correlations is supposed that the relaxation 
time of a species ݏ is same whatever the species ݅ which it 
meets, provided that their masses are identical. Therefore, the 
following approximations can be employed:  
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The model with 17 reactions is: 
 

O2+M ↔ 2O+M r = 1 to 5 

N2+M ↔ 2N+M r = 6 to 10 

NO+M ↔ N+O+M r = 11  to  15 

N2+O ↔ NO+N r =16 
NO+O ↔ O2+N r = 17 

 
The species ܯcan be one of the five chemical species (in 

the order:	ܱଶ, ଶܰ, ܱܰ,   .(ܰ	ݎ݋	ܱ

III. AXISYMMETRIC FORMULATION 

A method developed within the Sinus project of the INRIA 
Sophia-Antipolis [1] makes it possible to pass from 3D to 2D 
axisymmetric by using a technique of disturbance of domain. 
Taking advantage of this finding, here the problem is 
considered as being axisymmetric. 

The system of (1) can be written as:  
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volume of center ሺ݅, ݆ሻ, ܽ݅݁ݎ൫ܥ௜,௝൯ is the surface of the 
symmetry plane passing by the center of elementary volume 
and ߟ௔ is the integrated normal. The third term of the equation 
expresses the axisymmetric flow condition. The new Fluxes 
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IV. DISCRETIZATION IN TIME 

The present numerical method is based on an explicit 
approach in time and space. The step of time ∆ݐ is such as: 
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The ܮܨܥ	(Courant, Friedrich, Lewis) is a stability factor [4], 

ܸ is the velocity of the flow,ܽ the speed of sound and Δݔ is the 
small length of the mesh at the same point	ሺ݅, ݆ሻ. At each time 
step and for each pointሺ݅, ݆ሻ, the system of (22) can be written 
as:  
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The choice of the grid and ܮܨܥ plays an important role to 

obtain the stationary solution. 

V. DECOMPOSITION OF VAN-LEER 

In this study, the decomposition of Van-Leer [7] is selected, 
namely a decomposition of flows in two parts ௏݂௅

ି  and ௏݂௅
ା . 

This decomposition must apply to the present two-dimensional 
problem by calculating the flow within each interface between 
two cells. Moreover, through this interface, the normal 
direction is paramount, thus, a change of reference mark is 
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applied to place in the reference mark of the interface and its 
normal by the intermediary of a rotation ܴ, Fig. 1. 

 

 

Fig. 1 Interface and its normal 
 
The vector ாܹ (variable of Euler) is written	 ாܹ

ோ in the new 
reference mark  
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where ௡ܸሬሬሬԦ is obtained from ሬܸԦ , via the rotation ܴ, in the 
following way: 
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The overall transformation ܴ is written overall  
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Moreover, at each interface ݅ ൅ 1/2, two neighbor states ݅ 

and ݅ ൅ 1 are known. Thus, one can calculate the one-
dimensional flow F through the interface, total flow ݂ሺܹ,  ሻߟ
being deduced from F by applying the opposite rotation, as: 
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This property makes it possible to use only one component 
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where ܯ௡ ൌ ௡ݑ ܽ⁄  ௡ are the velocity in the referenceݒ ௡ andݑ ,
mark of the interface. 

VI. BOUNDARY CONDITIONS 

Boundary conditions give the most serious problems for the 
designer of general purpose CFD codes. All CFD problems 
are defined in terms of initial and boundary conditions. It is 
important to specify these correctly and understands their role 
in the numerical algorithm. In unsteady problems the initial 
values of all flow variables need to be specified at all points in 
the computational domain. The present work describes the 
implementation of the following most common boundary 
conditions in the discredited equations of the finite volume 
method: inlet, outlet, wall and symmetry Fig. 2. 

 

 

Fig. 2 Computational domain and boundary conditions 

A. Inlet Boundary Conditions 

At the inlet the Mach number, pressure and temperature are 
fixed because the flow is hypersonic. 

B. Body Surface 

The no-slip condition for the velocity is usually used at the 
body surface. The temperature gradient at the wall is zero, in 
accordance with the Fourier equation of heat conduction in the 
normal-direction together with the assumption of zero heat 
flux at the wall, it is the adiabatic wall. No condition is 
imposed on the wall temperature. In this study, the wall shear 
stress is calculated by: 

 

߬௪ ൌ ߤ ቀ
డ௏೟
డ௡
ቁ
௪௔௟௟

ൌ ߤ
௏೟
∆௡

                 (34) 

Solid wall, velocity = 0    

Axis of symmetry 

Inflow boundary

Outflow boundary 

Shock 
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where 

௧ܸ ൌ ሬܸԦ.  Ԧ                     (35)ݐ
 
and 

∆݊ ൌ ඥ∆ݔଶ ൅  ଶ                (36)ݕ∆
 

Here we assume that the coordinate of the unit vector ݐԦ is in 
the direction of the shear force at the wall and the unit vector 
ሬ݊Ԧ is normal at	ݐԦ , Fig. 3. 

 

 

Fig. 3 Grid near the wall 

C. Axis of Symmetry  

The conditions at axis of symmetry boundary are no flow 
and no scalar flux across the axis.  

D. Outlet Boundary Conditions 

At the exit of the computational domain, the values of the 
flow parameters are extrapolated from the interior values, 
including in the boundary layer. 

VII. RESULTS AND INTERPRETATIONS 

Consider an axisymmetric blunt body defined geometrically 
by hemisphere as shown in Fig. 4, when the ray is denoted 
by	ݎ ൌ 4	ܿ݉. The computational domain is limited by the 
blunt body and an ellipse with ܽ ൌ ܾ	and	ݎ	1.2 ൌ  . ݎ	1.5
Assume a hypersonic flow-field where the free-stream Mach 
number equal	10, corresponding to the velocity of 3442 m/s. 
The configuration is at zero degree angle of attack. A 
ሺ20101ݔሻ grid system is created by an elliptic scheme, 20 
meshes along the axis and 101 meshes along the wall. Note 
that grid points are clustered near the stagnation region where 
the flow is expected to the subsonic. In our calculations we 
used several sizes of grid while starting with that of Fig. 4 
(20x101). The grid (70x356) is selected since it gives good 
results and requires less time computing where we stop 
calculations when the residue equal 10ିହ . 

Fig. 5 shows the velocity profile at the station ݎ/ݔ ൌ 0.893. 
We observe clearly the boundary layer thickness where	ఎ

௥
ൎ

0.1. We can also observe the detached shock and the free 
stream.  
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Fig. 4 Grid of solution domain 

 
The thermal boundary layer is shown in Fig. 6. We give 

also the temperature of vibration of ܱଶ and	 ଶܰ. The thermal 
boundary layer thickness is about		ݎ/ߟ ൎ 0.1, the temperature 
of translation-rotation at the wall is equal to 4447K and the 
ones of vibration for ܱଶ and ଶܰ are 4173ܭ and 3234ܭ 
respectively. The difference is explained by the fact that the 
flow is in nonequilibrium. It is observed that the shock 
through the vibration temperature does not vary suddenly, the 
relaxation time of the temperature T is less than the relaxation 
time of vibration temperature. Chemical reactions will also 
take place in the boundary layer as the temperature T varies 
considerably. Figs. 7 and 8 shows the mass fractions variations 
of ሺܱଶ, ଶܰሻ and ሺܱܰ, ܱ,ܰሻ respectively.	

 

 

Fig. 5 Velocity profile at ݎ/ݔ	 ൌ 	0.893 
 

 

Fig. 6 Velocity profile at ݎ/ݔ	 ൌ 	0.893 

  ሬܸԦ	

Ԧݐ

ሬ݊Ԧ
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Fig. 7 Mass fractions at ݎ/ݔ	 ൌ 	0.893 
 

 

Fig. 8 Mass fractions at ݎ/ݔ	 ൌ 	0.893 
 

 

Fig. 9 Stress viscous flow at ݎ/ݔ	 ൌ 	0.893 

 

 
Fig. 10 Shear stress along the wall 

 
Another parameter very significant to calculate in this kind 

of flow, it is that of the stress	߬௫௬. Fig. 9 shows the variation 
of the stress along the normal of the wall at	ݎ/ݔ ൌ 0.893. This 

profile itself converges to the exact solution for a grid 
of	ሺ70356ݔሻ. It is observed that the intensity of the stress 
increases quickly while approaching the wall. The viscous 
stress at the wall can be calculated from the all stresses at the 
same point. Fig. 10 shows the variation of the stress ݈݈߬ܽݓalong 
the wall of the blunt body. 

The variation of other parameters such as pressure, 
temperature and density from free stream until the stagnation 
point along the axis and along the wall is given by Figs. 11-13. 
Concerning the pressure, it increases rapidly through the shock 
and it continues to increase until the stagnation point when 
takes the value of ܲ/ ௔ܲ ൌ 149.24 then decreases along the 
wall. As against the temperature after its increase through the 
shock when its value is	ܶ/ ௔ܶ ൌ 20.16, it decreases until the 
stagnation point when it will have the value of	ܶ/ ௔ܶ ൌ 16.47. 
This decrease is caused by the dissociation of air in five 
species. It is the endothermic reactions. Along the wall, the 
temperature remains almost constant. The density follows the 
same variation as the pressure. In the three figures the shock 
position is	ݔ ⁄ݎ ൌ െ0.11. Fig. 14 shows the evolution details of 
the mass fractions. Chemical reactions begin after the shock 
gradually until stagnation point where we are 13.85% of ܱଶ, 
75.74% of ଶܰ, 6.91% of ܱܰ, 3.47% of ܱ and 0.034% of ܱ, 
and then the mass fractions of ܱܰ, ܱ and ܰ decrease slowly 
along the wall and those of ܱଶ and ଶܰ increase.  

Finally, we give the overall representation of the flow as 
iso-contours for all variables around the blunt body, Figs. 15-
24. A comparison of Mach-contours with the inviscid flow is 
represented on Figs. 16 and 17. It is completely clear that the 
boundary layer influences on the flow parameters. 

 

 

Fig. 11 Pressure distribution 
 

 

Fig. 12 Temperature distribution 
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Fig. 13 Density distribution 
 

 

Fig.14 Mass fractions distribution 
 

 

Fig. 15 Temperatures contours 
 

 

Fig. 16 Mach number contours for viscous flow 
 

 

Fig. 17 Mach number contours for inviscid flow 
 

 

Fig. 18 Vibrational temperature contours of ܱଶ 
 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:5, 2015

292

 

 

 

Fig. 19 Vibrational temperature contours of ଶܰ 
 

 

Fig. 20 Mass fraction contours of ܱଶ 
 

 

Fig. 21 Mass fraction contours of ଶܰ 
 

 

Fig. 22 Mass fraction contours of ܱܰ 
 

 

Fig. 23 Mass fraction contours of ܱ 
 

 

Fig. 24 Mass fraction contours of ܰ 
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VIII. CONCLUSION 

The numerical simulation of the flows around blunt bodies 
at high temperature provided satisfactory results from a 
numerical and a physical point of view. With high degree of 
accuracy requirements, computational convergence is 
achieved and the physical phenomena considered are visible 
after the detached shock wave and around the blunt body. The 
study of the reactive flow around a blunt body is more realistic 
if we take into account the effect of viscosity. Navier-Stokes 
equations give a more explanatory solution to the phenomena 
occurring near the adiabatic wall. The temperature at the wall 
is very high compared to the case Euler where did not take 
into account of the non-slip condition [3].  
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