
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:5, 2015

1166

A Comparative Study
of Malware Detection Techniques
Using Machine Learning Methods

Cristina Vatamanu, Doina Cosovan, Dragoş Gavriluţ, Henri Luchian

Abstract—In the past few years, the amount of malicious software
increased exponentially and, therefore, machine learning algorithms
became instrumental in identifying clean and malware files through
(semi)-automated classification. When working with very large
datasets, the major challenge is to reach both a very high malware
detection rate and a very low false positive rate. Another challenge
is to minimize the time needed for the machine learning algorithm to
do so. This paper presents a comparative study between different
machine learning techniques such as linear classifiers, ensembles,
decision trees or various hybrids thereof. The training dataset consists
of approximately 2 million clean files and 200.000 infected files,
which is a realistic quantitative mixture. The paper investigates the
above mentioned methods with respect to both their performance
(detection rate and false positive rate) and their practicability.

Keywords—Detection Rate, False Positives, Perceptron, One Side
Class, Ensembles, Decision Tree, Hybrid methods, Feature Selection.

I. INTRODUCTION

AHUGE amount of malware exists for every platform
and operating system. Once the malware is identified,

antivirus software can automatically detect and clean the
malware. Identifying previously unknown malware also needs
to be done in an automatic manner, due to the enormous
amount of new malware (of the order of magnitude of 105)
that is launched daily. This is why machine learning took the
proscenium in malware detection. This paper is concerned with
several critical issues in detecting new malware.

The first issue is the rate of false positives. The wrong
classification of a legitimate file (labeled as malicious) can
lead to crashes, data loss or other consequences which
can be comparable to or even worse than the effect of a
wrong classification of a malicious file (labeled as legitimate).
Therefore, a main practical concerns of any machine learning
approach to malware detection is to keep the rate of false
positives very low.

Obviously, the issue of the detection rate remains critical:
the higher the rate of files correctly labeled as malware, the
better the user is protected against cyber-attacks. Nevertheless,
many classification algorithms reach a high detection rate
at the expense of the false positives rate, which increases
as well. The major challenge is to find a trade-off between

Cristina Vatamanu, Doina Cosovan and Dragos Gavrilut are with the Faculty
of Computer Science from ”Al. Ioan Cuza” University, Iasi, Roumania and
with the Bitdefender Anti-Malware Laboratory (phone: +40-724-334-632 ;
fax:+40-232-244-390; e-mail: cvatamanu@bitdefender.com)

Henri Luchian is with the Faculty of Computer Science from ”Al. Ioan
Cuza” University, Iasi, Roumania

detection rate and false positive rate. This trade-off is all the
more difficult to achieve since the available training time is
severely limited by the very fast pace of malware evolution:
new versions of the same malware become active every
hour. Databases of millions of records, each of them having
thousands of features, tighten further the time constraints.

This paper is based on our previous study ([3]), that
presents the One Side Class (OSC) algorithm. It was optimized
in terms of training time; in this paper we consider its third
version, called OSC-3. Its main downside is the average
detection rate, so it can’t be used as a standalone detection
method. In the sequel, several approaches (feature selection,
ensemble strategies, binary decision trees, hybridization) are
discussed, with an eye towards reaching a good trade-off
between training time, detection rate and false positive rate.

The perceptron algorithm was chosen as base algorithm
because it fits well when integrating in an AV product (low
time complexity, the ability to run in a parallel manner), but
it has to run with the given features (it doesn’t create new
features as, for example, genetic algorithms). In this case, a
good data representation is crucial in obtaining the best results.
An important step of our research was creating the database,
choosing the right features for describing our data and refining
our database by removing the unwanted noise.

The experiments show an improvement of the detection rate
from 29.78% to 76.46% while maintaining a medium rate of
0.5080% false positives in 416 minutes.

In Section II, we review solutions proposed in the literature
for some of the problems we are dealing with, while in
Section III we present the dataset and the algorithms (the base
algorithm OSC, ensembles and hybrid algorithms based on
OSC). In the last section, we discuss the experimental results.

II. RELATED WORK

This section reviews approaches and techniques proposed by
various authors regarding central issues for our experiments:
false positive rate minimization and ensemble techniques.

A. False Positive Rate Minimization

A few approaches based on cost-sensitive classification have
been proposed for reducing false positives. Content-specific
misclassification costs have been used in association with
Support Vector Machines (SVMs) in [6], but have also
been generally described in [2], where the machine learning

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:5, 2015

1167

algorithm is considered a black box and its implementation
details are left out.

Another interesting mechanism for achieving a low false
positive rate is presented in [9], where the results of
53 different spam filters are combined instead of using
only one. The mechanisms used include averaging the
binary classifications returned by the individual filters,
averaging log-odds estimates based on the scores returned
by the individual filters and logistic-regression-based stacking
methods.

In [17], two techniques aiming at limiting both false positive
and false negative rates for spam detection are presented. One
of them consists in stratification, which involves weighing
good messages as more valuable than spam data. The other
one, firstly discards the samples that can be easily classified
and then lets the classifier focus on the ones which are
similar but pertain to different classes. This way, the second
model focuses on the region which is harder to classify. Both
techniques were tried on Naive Bayes and logistic regression.
In this paper, we discuss an a pproach similar to the second
one, using perceptrons.

In [16], different machine learning algorithms have been
tested against spam detection. Focusing on limiting the number
of false positives, the authors concluded that perceptrons can’t
be altered in such a way as to limit the number of falsely
detected emails.

Despite this conclusion, in [4], a zero false positive
perceptron was proposed and studied. It uses as basis a
standard perceptron algorithm, but adds a few steps to be
executed after each iteration and aiming at adjusting the
separation plan in such a way as to correctly classify all the
elements from one of the two classes. In the end, the plan
will separate on one part only the malicious files and on the
other - both clean and malicious files. This perceptron was
further optimized and tested in [3]. The authors in [1] analyze
the possibility that the zero false positive constraint can cause
over-fitting. According to their conclusion, the detection rate
decreases normally after a period of time, so the generated
model can be used to classify malware even after a period of
time passes.

B. Ensemble Techniques

Lately, a lot of machine learning and data mining techniques
have been proposed in order to improve proactivity of malware
detection ([14], [15], [7], [11], [5], [12]). Some of them
performed better than the others on different aspects of
interest. In the literature appeared the idea that it would be
useful to combine the advantages provided by those techniques
into a single classifier. Thus different ensembles were proposed
to deal with malicious files, network traffic and even malicious
urls.

In [18], the Dempster-Shafer theory is used to create
combining rules for individual decisions of PNN (Probabilistic
Neural Network) classifiers. 450 malicious executables from
the VX Heavens (http://www.vx.netlux.org) malware dataset
and 423 benign files obtained from a Windows 2000 server
machine were used to compare individual PNN classifiers with

the obtained ensemble on n-gram based features selected using
the Information Gain method. According to their results, the
ensemble performed better.

A new ensemble learning method, called SVM-AR, is
proposed in [8]. It combines SVM (Support Vector Machines)
and association rules based on hierarchical taxonomy. First,
SVM determines a hyper plane that classifies the samples
in two classes: clean and malicious. Then, the association
rules are used as local optima filters in order to solve false
predictions made by the SVM algorithm. According to the
authors, this ensemble is comparable to any individual learning
algorithm when it comes to execution times and even performs
better than the well-known ensemble algorithms (Bagging,
Boosting, Voting, Stacking, Grading) in respect to accuracy,
detection and false positive rates.

In [10], a multi-inducer ensemble is proposed. Starting with
the idea that combining the output of different classifiers
is only useful when they disagree, the authors decided
to combine five different classifiers corresponding to five
different classifier families: classifier C4.5 corresponding to
classifier family Decision Trees, KNN - Lazy Classifiers,
VFI - General Classifiers, OneR - Rules, Naive Bayes -
Bayes Classifier. These are expected to generate models
that are going to classify differently given the same input.
Different combination techniques were also used: best
classifier (choosing the classifier that outperforms all the
others), Majority Voting, Performance Weighting, Distribution
Summation, Bayesian Combination, Naive Bayes, Stacking
and Troika. In the end, they were tested on 22.735 benign
and 7.690 malicious files in terms of accuracy, UAC and
detection time. PE (Portable Executable) and function-based
features and n-grams were used after a selection based
on Document Frequency, Fisher Score and Gain Ratio.
Bayesian Combination managed to combine well all the
three requirements, although it was surpassed by different
combination methods regarding one of the three tested aspects.

Ensembles have been also used for detection of Android
malware. An example consists [13], where combination
schemes like Majority Voting, Stacking with all the base
learners and Stacking with a subset of base learners selected
using a simple heuristic are used to aggregate base learners
generated using algorithms like k-NN, NNet, SVMLinear,
SVMPoly, SVMRadical, and CART. The tests were performed
on 1225 malicious and 1225 clean samples downloaded from
Google Play, using as features static and dynamic native
API calls and static and dynamic Dalvik byte API calls.
The authors concluded that the selection of a subset of base
learners doesn’t bring a significant improvement to the results.
However, we are more interested in reducing the false positive
rate, while the above mentioned authors were mainly interested
in improving the detection rate. Their view was that a false
negative would cause a malware to act freely, while a false
positive would be easily solved by the security experts of the
application market. However, in the frame of our work, a false
positive can leave a computer unusable which takes precedence
over any other concern.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:5, 2015

1168

III. DATABASE AND ALGORITHMS

A. Database

The study was conducted on a database with millions of
records, 2.348.707 to be precise. It is divided as follows:
242.811 represent the malicious files and 2.105.896 records
correspond to the clean files. The malware collection was
gathered in the last three months, representing fresh new
samples from various malware families. The clean files were
collected for a period of one year and represent different
legitimate applications, system files from many operating
systems, components of the mostly used software. Each record
has 6.275 boolean features, that were extracted both statically
and dynamically. Static features include different information
related to file geometry, type of packer, type of compiler,
executable flags, and so on.

The dynamic features are extracted after the files are
executed or loaded. Examples of features extracted in this
manner could be: if the file drops other files on the disk, if
it connects to internet, if it downloads other components, if it
injects itself in some system processes.

In order to obtain this database, a filtering process was
applied for the malware collection. Certain types of malware
were removed from the dataset: file infectors, adware, keygens.
The behavior of file infectors can be briefly described as
modifying clean files by adding malicious code. Given this
fact the malware files are very similar to the original clean
files, so they represent a noise in the database. This is also
the case of adware: they appear to be legitimate programs or
applications, but in certain conditions unwanted commercial
content is displayed.

B. OSC

The OSC algorithm is a modified perceptron, which has the
property of correctly classifying all the records from one class.
At the end of each training iteration, there is an additional step,
that modifies the hyper-plan in such a way as to ensure that
all the elements pertaining to a certain class are all correctly
classified.

We present below a combination of two of these algorithms:
one for the class of clean files and one for the class of
malicious files. As a result, at the end of each iteration of the
training process, two hyper-planes will be defined: one will
correctly classify all the records corresponding to the clean
class and the other - all the records from the malware class.
As an example, after applying the two OSC algorithms, the
two hyper-plans will look like in the Fig. 1.

The hyper-plan for the clean class (blue plan) will have
above it only malicious records correctly classified and below
it - all the clean records and a few malicious records which
were incorrectly classified. On the other hand the hyper-plan
for the malware class (red plan) will have below clean samples
correctly classified and above - all the malicious samples and
some of the clean samples which were incorrectly classified.
By the end of the training process, all the elements above
the blue plan and all the elements below the red plan are
correctly classified. Therefore this two level OSC algorithm
can be integrated in an ensemble-based system. The correct

Fig. 1. The two hyper-plans at the end of the training process

Fig. 2. Complete ensemble process

classified records will be removed from the data set at each
ensemble iteration. Only the records between the two plans
will continue to participate at the next ensemble iteration.
In theory, if the number of iterations is high enough, all the
records will be correctly classified (Fig. 2).

C. Ensembles

Ensemble Learning involves combining various learning
algorithms so that the final results are better compared to using
each of them standalone. The term ensemble, however, is used
to refer methods that use the same learning algorithm in order
to generate multiple hypotheses. The idea behind ensembles is
that different features can describe well different areas of the
dataset. This means that one can build different models that
rely on different features in order to describe different areas
of the dataset. The Algorithm 1 illustrates our approach.

In this paper, we build ensembles based on the OSC
perceptron. At each iteration, an OSC perceptron is trained
and the dataset needed for the next iteration is extracted. The
algorithm stops either when all the samples from the training
set are correctly classified or when the maximum number
of iterations is reached. In order to choose the best way of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:5, 2015

1169

Algorithm 1 Ensemble Algorithm

1: D ← ⋃|R|
i=1 Ri - the database

2: A ← {A1, A2, ...An} - set of algorithms
3: function ensemble(D,A)
4: while |D| > 0 do
5: Choose Ai from A, taking into consideration D
6: S ← Ai(D), 0 < |S| < |D|
7: D ← D \ S
8: end while
9: end function

Algorithm 2 Ensemble One Class Algorithm

1: S ← ⋃|R|
i=1 Ri - the database

2: DL - desired class label for the OSC algorithm
3: maxCount - the maximum number of iterations
4: function ensemble one class(S,DL,maxCount)
5: itCount ← 0
6: repeat
7: NS ← ∅
8: Model ← OSC3(S,DL)
9: for i ← 1 → |S| do

10: if IsCorrectlyClassified(Model, Si) then
11: if Si.L = DL then
12: NS.push(Si)
13: end if
14: else
15: NS.push(Si)
16: end if
17: end for
18: S ← NS
19: itCount ← itCount+ 1
20: until |S| = 0 ‖ itCount = maxCount
21: end function

composing the OSC perceptrons into an ensemble, we tried
a few different techniques of changing the datasets across
iterations. In order to simplify the writing of the algorithms
corresponding to these techniques, the following notations are
used:

1) Record → R
2) Features → F
3) Label → L

The simplest mechanism ignores the data that was correctly
classified as being part of one of the two classes (clean or
infected) during the current iteration, so that, in the next
iteration, the dataset contains only the misclassified samples
and the samples correctly classified as pertaining to the other
class.

For example, the Algorithm 2 trains a model on the current
dataset and, at each iteration, prepares the dataset for the next
iteration by discarding the samples correctly classified from
the class opposed to desired class DL (Fig. 3). Of course, DL
can take one of two possible values: clean and malware.

The previously described techniques tend to train, at each
step, models on all the samples of a given class and the
remaining ones from the other class. This happens because

Fig. 3. First iteration for Ensemble One Class Algorithm

Algorithm 3 Ensemble Alternative Class Algorithm

1: S ← ⋃|R|
i=1 Ri - the database

2: DL - desired class label for the OSC algorithm
3: maxCount - the maximum number of iterations
4: function ensemble alternative class(S,DL,maxCount)
5: itCount ← 0
6: repeat
7: NS ← ∅
8: Model ← OSC3(S,DL)
9: for i ← 1 → |S| do

10: if IsCorrectlyClassified(Model, Si) then
11: if Si.L = DL then
12: NS.push(Si)
13: end if
14: else
15: NS.push(Si)
16: end if
17: end for
18: S ← NS
19: DL ← (−1) ∗DL
20: itCount ← itCount+ 1
21: until |S| = 0 ‖ itCcount = maxCount
22: end function

Fig. 4. First two iterations for Ensemble Alternative Class Algorithm

all the files of a given type are kept until the end and the files
of the other type are discarded systematically. This type of
ensembles can be viewed as filters for clean and respectively
malicious files. In the last iterations, the algorithm will have
to build a filter for a small set of files of one type and a very
big amount of files of the other type. But, sometimes it is
hard to find properties of the small set so that none of the
files from the huge set has in order to discard the small set.
Therefore we combined these two algorithms in a single one.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:5, 2015

1170

Algorithm 4 Ensemble n Alternative Class Algorithm

1: S ← ⋃|R|
i=1 Ri - the database

2: DL - desired class label for the OSC algorithm
3: maxCount - the maximum number of iterations
4: n - number of consecutive iterations
5: function ensemble n alternative class(S,DL,maxCount, n)
6: count ← 0
7: itCount ← 0
8: repeat
9: NS ← ∅

10: Model ← OSC3(S,DL)
11: for i ← 1 → |S| do
12: if IsCorrectlyClassified(Model, Si) then
13: if Si.L = DL then
14: NS.push(Si)
15: end if
16: else
17: NS.push(Si)
18: end if
19: end for
20: S ← NS
21: count ← count+ 1
22: if count = n then
23: DL ← (−1) ∗DL
24: count ← 0
25: end if
26: itCount ← itCount+ 1
27: until |S| = 0 ‖ itCcount = maxCount
28: end function

Fig. 5. First iteration for Ensemble Both Classes Algorithm

We consider two ways of doing this. The first one involves
discarding alternatively clean and malicious files in successive
iterations as illustrated in Algorithm 3. At each iteration, one
has to make sure that the class of interest in changed, as
illustrated in Fig. 4. In this case, one class is considered to be
positive (1) and the other one - negative (-1).

The second one switches every k iterations between
discarding clean files and discarding infected files, where
k > 1. By modifying the previous algorithm, we obtained
the Algorithm 4, that illustrates this technique.

In order to understand the limitations imposed by these
strategies, let us consider the following use case. During

Algorithm 5 Ensemble Best Algorithm

1: S ← ⋃|R|
i=1 Ri - the database

2: DL - desired class label for the OSC algorithm
3: maxCount - the maximum number of iterations
4: function ensemble best(S,DL,maxCount)
5: itCount ← 0
6: repeat
7: NS1 ← ∅
8: NS2 ← ∅
9: Model1 ← OSC3(S,DL)

10: Model2 ← OSC3(S, (−1) ∗DL)
11: for i ← 1 → |S| do
12: if IsCorrectlyClassified(Model1, Si) then
13: if Si.L = DL then
14: NS1.push(Si)
15: end if
16: else
17: NS1.push(Si)
18: end if
19: if IsCorrectlyClassified(Model2, Si) then
20: if Si.L = DL then
21: NS2.push(Si)
22: end if
23: else
24: NS2.push(Si)
25: end if
26: end for
27: if |NS1| > |NS2| then
28: S ← NS1

29: else
30: S ← NS2

31: end if
32: DL ← (−1) ∗DL
33: itCount ← itCount+ 1
34: until |S| = 0 ‖ itCcount = maxCount
35: end function

a specified iteration, in which the algorithm is supposed
to discard the malicious files, the resulted model classifies
correctly a lot of clean files and only a few malicious files. In
this way, the opportunity to discard a big amount of files is
lost just because the choice of the class of files to be discarded
is independent of the results obtained by the current model.
In order to solve this problem, the Algorithm 5 is proposed. It
decides to discard the class of files that has the biggest number
of correct classifications in that specific iteration.

Since any model obtained during an iteration classifies
correctly both clean and infected files, it would be reasonable
to try a strategy where all the correctly classified files are
discarded. The advantage consists in the fact that the samples
that are already correctly classified do not alter the models
to be built in the next iterations. Thus the other models can
focus only on the data wrongly classified during the previous
iteration. Also the amount of files from the dataset decreases
faster. This approach is presented in Algorithm 6 (Fig. 5).

An interesting aspect to be considered here is the feature

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:5, 2015

1171

Algorithm 6 Ensemble Both Classes Algorithm

1: S ← ⋃|R|
i=1 Ri - the database

2: DL - desired class label for the OSC algorithm
3: maxCount - the maximum number of iterations
4: function ensemble both classes(S,DL,maxCount)
5: itCount ← 0
6: repeat
7: NS ← ∅
8: Model1 ← OSC3(S,DL)
9: Model2 ← OSC3(S, (−1) ∗DL)

10: for i ← 1 → |S| do
11: if IsCorrectlyClassified(Model1, Si) then
12: if notIsCorrectlyClassified(Model2, Si)

then
13: NS.push(Si)
14: end if
15: else
16: if IsCorrectlyClassified(Model2, Si)

then
17: NS.push(Si)
18: end if
19: end if
20: end for
21: S ← NS
22: itCount ← itCount+ 1
23: until |S| = 0 ‖ itCcount = maxCount
24: end function

set. Having a large amount of features describing the data to be
classified imposes the necessity of feature selection. Normally,
feature selection is performed only once, right before training
a classifier. However, when it comes to ensembles, one can
select a different set of features after each iteration. In this
way, every model can be built on the features that are more
appropriate for the subset it is trained on.

Finally, we tried a hybrid approach. We tested different
scenarios where we combined a Binary Decision Tree with
several ensemble techniques based on the OSC algorithm.

D. Binary Decision Trees

A Binary Decision Trees consists of a root node, several
decision nodes and terminal nodes (leafs). At each decision
node condition on a certain feature is evaluated and the data
set is consequently divided into two subsets. The terminal
nodes represent classes of records with specific properties
(clusters). The set of features used in successive evaluations
are chosen using various rules / scores. Subsequently, each
set of records from the terminal nodes of the binary tree
(the clusters) are used in the training process for different
classification algorithms or systems. Algorithm 7 describes the
method used to create these subsets.

The save operation represents the fact that all the elements
from records are comprised in a new tree node (a terminal
node).

An important issue when using a Binary Decision Tree is
the choice of the score functions. Since we wanted to achive a

Algorithm 7 Binary Decission Tree Split

1: S ← ⋃|R|
i=1 Ri - the database

2: F ← ⋃|R.F |
j=1 R.Fj - the features set

3: maxDepth - the maximum binary tree leves
4: depth ← 0
5: function cluster(S, F, depth)
6: if depth = maxDepth then
7: save(cluster, S)
8: return
9: end if

10: max ← 0
11: EF ← 0 (evaluated feature)
12: for j ← 1 → |F | do
13: score ← compute score(S, Fj)
14: if score > max then
15: max ← score
16: EF ← Fj

17: end if
18: end for
19: SR ← ∅
20: SL ← ∅
21: for i ← 1 → |S| do
22: if Si.EF = 0 then
23: SL ← SL

⋃
Si

24: else
25: SR ← SR

⋃
Si

26: end if
27: end for
28: F ← F \ EF
29: cluster(SL, depth + 1, F)
30: cluster(SR, depth + 1, F)
31: end function

equal repatization of records on all terminal nodes we’ve used
the following score (Median Close):

(1−| countClean
totalClean −0.5|)+(1−| countInfected

totalInfected −0.5|)
2

The following notation was used:
• countClean - the number of clean files for which the given

feature is set to true
• totalClean - the total number of clean files
• countInfected - the number of infected files for which the

given feature is set to true
• totalInfected - the total number of infected files
The preprocessing of the database was performed in order

to obtain a set of clusters. The next step was to look for
the optimal balance between training time, detection rate and
false positive rate, using several classification approaches. The
binary decision tree was combined with the two layer OSC
algorithm and the ensemble systems discussed above; the
Result section highlights the best solutions.

IV. RESULTS

In order for the results to be consistent, all the tests were
conducted on the same computer. As mentioned in the previous

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:5, 2015

1172

(a) (b)

Fig. 6. Detection Rate (a) / FP Rate (b) per iteration for ENS10-OSC-BC

(a) (b)

Fig. 7. Training process for OSC-BC with 500 iterations (a) and 3000
iterations (b) during the second step of BDT4-ENS10-OSC-BC

(a) (b)

Fig. 8. Detection Rate (a) and False Positive Rate (b) for the tested algorithms

section, the database consists of 2.348.707 records (242.811
malware, 2.105.896 clean). Each record has 6.275 features.
The 500 features used in the training process were selected
using F2 score. Each algorithm was tested using a 3-fold cross
validation.

For brevity, we use the following abreviations:
1) OSC-BC → OSC Both Class
2) ENS10-OSC-BC → OSC Both Class in an ensemble

system with 10 iterations (Alg. 6)
3) BDT3-OSC-BC → Binary Decision Tree (3 levels)

combined with OSC-BC
4) BDT3-ENS10-OSC-BC → Binary Decision Tree (3

levels) combined with ENS10-OSC-BC
5) BDT4-OSC-BC → Binary Decision Tree (4 levels)

combined with OSC-BC
6) BDT4-ENS10-OSC-BC → Binary Decision Tree (4

levels) combined with ENS10-OSC-BC
7) BDT4-ENS10-OSC-BC-3000 → Binary Decision Tree

(4 levels) combined with ENS10-OSC-BC, but the
OSC-BC is trained during 3000 iterations

Of the ensemble techniques presented in this paper,

TABLE I
RESULTS

Algorithm Detection Rate False Positives Training Time
(percentage) (percentage) (in minutes)

OSC-BC 29.78 % 0.0069 % 125
ENS10-OSC-BC 34.96 % 0.0159 % 189
BDT3-OSC-BC 51.65 % 0.0355 % 200
BDT3-ENS10-

OSC-BC 59.94 % 0.1093 % 256
BDT4-OSC-BC 58.66 % 0.0734 % 112
BDT4-ENS10-

OSC-BC 70.07 % 0.2618 % 288
BDT4-ENS10-
OSC-BC-3000 76.46 % 0.5080 % 416

the Algorithm 6 achieved the best results. However, the
improvement is only significant in the first 2-3 iterations, as
illustrated by Fig. 6.

Since ENS10-OSC-BC proved to be the best ensemble,
the hybrid algorithms combine this ensemble with the Binary
Decision Tree algorithm. For comparison purposes, a hybrid
algorithm combining the OSC-BC algorithm with the Binary
Decision Tree is tested as well.

Although a detection boost is obvious when combining the
OSC-BC with the Binary Decision Tree, this may not be
good enough. Consequently, we decided to analyze the data
from each cluster. We noticed that, during the OSC training
process, after the first ensemble iteration, approximately 70%
of the iterations have an odd behavior: the number of correctly
classified records alternated between a small value and a
high value. Only during the last 30% of the iterations,
the detection rate seemed to have a linear increase.This
observation encouraged us to increase the number of iterations
of the OSC-BC training process from 500 to 3000 starting
from the second ensemble step.In this way, only 10% of
the iterations presented the previously described behavior
(detection rate alternations) and the detection boost was more
visible. Specifically, detection rate of the second ensemble
step increased from 16.99% to 27.84%. Fig. 7 illustrates this
improvement.

The Fig. 8 illustrates both the detection and false positive
rates for all the relevant algorithms, while the Table I
summarizes the results values.

V. CONCLUSIONS

The algorithms presented above illustrate different ensemble
configurations in order to boost the detection rate. Our
experiments show that, while BDT4-ENS10-OSC-BC-3000
provides the best detection rate, it also has the highest false
positive rate. Therefore, this algorithm can be used in practice
but only in combination with a method for false positive
filtering (such as file white-listing).

Most AV products have a detection based on multiple
algorithms. There are two main reasons for this: one is to
increase the detection rate and the other one is to protect
against targeted malware. A targeted malware is a malware

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:5, 2015

1173

that is constructed in such a way that, at the moment it is
deployed, it is not detected by a specific AV product. From
the AV vendor point of view, the solution is not to have a
detection based on complementary algorithms, but rather to
have a detection where the same malware is detected by a
completely different algorithm. This will make the task of a
targeted malware more difficult. However, it poses a problem
for the vendor as well. In order for a detection algorithm
to be used in such a combination, it by itself should have
a good detection rate (more than 50% of the samples). The
method presented in this paper illustrates a way to increase
the detection rate to a point where machine learning detection
can be used to prevent AV malware targeted attacks.

Another thing that should be pointed out here is that using a
Binary Decision Tree means that every subset that is generated
by a terminal node can be tested in parallel. Even if this is
merely a conclusion based on the design of a Binary Decision
Tree, it is definitely something that should be considered for
use in practice (for example, BDT4-ENS10-OSC-BC-3000
could be trained 16 times faster).

As future work, we consider developing a hybrid
algorithm that combines Binary Decision Trees with ensemble
algorithms in such a way as to perform binary splits only when
the ensemble performs poorly. Also it would be interesting to
use genetic algorithms for choosing at each ensemble step the
algorithm to be used for the next ensemble step.

REFERENCES

[1] Mihai Cimpoesu, Dragos Gavrilut, and Adrian Popescu. The proactivity
of perceptron derived algorithms in malware detection. Journal in
Computer Virology, 8(4):133–140, 2012.

[2] Pedro Domingos. Metacost: A general method for making classifiers
cost-sensitive. In Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Diego, CA,
USA, August 15-18, 1999, pages 155–164, 1999.

[3] Dragos Gavrilut, Razvan Benchea, and Cristina Vatamanu. Optimized
zero false positives perceptron training for malware detection. In
14th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, SYNASC 2012, Timisoara, Romania, September
26-29, 2012, pages 247–253, 2012.

[4] Dragos Gavrilut, Mihai Cimpoesu, Dan Anton, and Liviu Ciortuz.
Malware detection using machine learning. In Proceedings of the
International Multiconference on Computer Science and Information
Technology, IMCSIT 2009, Mragowo, Poland, 12-14 October 2009,
pages 735–741, 2009.

[5] Yongtao Hu, Liang Chen, Ming Xu, Ning Zheng, and Yanhua Guo.
Unknown malicious executables detection based on run-time behavior.
In Fifth International Conference on Fuzzy Systems and Knowledge
Discovery, FSKD 2008, 18-20 October 2008, Jinan, Shandong, China,
Proceedings, Volume 4, pages 391–395, 2008.

[6] Aleksander Kocz and Joshua Alspector. Svm-based filtering of
e-mail spam with content-specific misclassification costs. In
IN PROCEEDINGS OF THE WORKSHOP ON TEXT MINING
(TEXTDM2001, 2001.

[7] Jeremy Z. Kolter and Marcus A. Maloof. Learning to detect and
classify malicious executables in the wild. Journal of Machine Learning
Research, 6:2721–2744, 2006.

[8] Yi-Bin Lu, Shu-Chang Din, Chao-Fu Zheng, and Bai-Jian Gao. Using
multi-feature and classifier ensembles to improve malware detection.
Journal of C.C.I.T., 39(2), 2010.

[9] Thomas R. Lynam, Gordon V. Cormack, and David R. Cheriton. On-line
spam filter fusion. In SIGIR 2006: Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval, Seattle, Washington, USA, August 6-11, 2006,
pages 123–130, 2006.

[10] Eitan Menahem, Asaf Shabtai, Lior Rokach, and Yuval Elovici.
Improving malware detection by applying multi-inducer ensemble.
Computational Statistics & Data Analysis, 53(4):1483–1494, 2009.

[11] Robert Moskovitch, Yuval Elovici, and Lior Rokach. Detection of
unknown computer worms based on behavioral classification of the host.
Computational Statistics & Data Analysis, 52(9):4544–4566, 2008.

[12] Robert Moskovitch, Clint Feher, Nir Tzachar, Eugene Berger, Marina
Gitelman, Shlomi Dolev, and Yuval Elovici. Unknown malcode detection
using OPCODE representation. In Intelligence and Security Informatics,
First European Conference, EuroISI 2008, Esbjerg, Denmark, December
3-5, 2008. Proceedings, pages 204–215, 2008.

[13] Mehmet Ozdemir and Ibrahim Sogukpinar. An android malware
detection architecture based on ensemble learning. Transactions on
Machine Learning and Artificial Intelligence, 2(3), 2014.

[14] Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J. Stolfo.
Data mining methods for detection of new malicious executables. In
2001 IEEE Symposium on Security and Privacy, Oakland, California,
USA May 14-16, 2001, pages 38–49, 2001.

[15] Dong-Her Shih, Hsiu-Sen Chiang, and David C. Yen. Classification
methods in the detection of new malicious emails. Inf. Sci.,
172(1-2):241–261, 2005.

[16] Konstantin Tretyakov. Machine learning techniques in spam filtering.
Data Mining Problem-oriented Seminar, 3(177):60–79, 2004.

[17] Wen-tau Yih, Joshua Goodman, and Geoff Hulten. Learning at low false
positive rates. In CEAS 2006 - The Third Conference on Email and
Anti-Spam, July 27-28, 2006, Mountain View, California, USA, 2006.

[18] Boyun Zhang, Jianping Yin, Jingbo Hao, Dingxing Zhang, and Shulin
Wang. Malicious codes detection based on ensemble learning. In
Autonomic and Trusted Computing, 4th International Conference, ATC
2007, Hong Kong, China, July 11-13, 2007, Proceedings, pages
468–477, 2007.

