
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

972


Abstract—One of the crucial parameters of digital cryptographic

systems is the selection of the keys used and their distribution. The
randomness of the keys has a strong impact on the system’s security
strength being difficult to be predicted, guessed, reproduced, or
discovered by a cryptanalyst. Therefore, adequate key randomness
generation is still sought for the benefit of stronger cryptosystems.
This paper suggests an algorithm designed to generate and test
pseudo random number sequences intended for cryptographic
applications. This algorithm is based on mathematically manipulating
a publically agreed upon information between sender and receiver
over a public channel. This information is used as a seed for
performing some mathematical functions in order to generate a
sequence of pseudorandom numbers that will be used for
encryption/decryption purposes. This manipulation involves
permutations and substitutions that fulfill Shannon’s principle of
“confusion and diffusion”. ASCII code characters were utilized in the
generation process instead of using bit strings initially, which adds
more flexibility in testing different seed values. Finally, the obtained
results would indicate sound difficulty of guessing keys by attackers.

Keywords—Cryptosystems, Information Security agreement,

Key distribution, Random numbers.

I. INTRODUCTION

NDEPENDENT, unpredictable and uniformly distributed
numbers that cannot be reliably reproduced are referred to

as random numbers [1]. They play a major part in practical
implementation and strength of most cryptographic systems.
They may be used as keys for symmetric crypto-systems,
public key parameters, session keys, etc. [2]. Failure of
obtaining strong keys definitely will end up with data security
compromise. Therefore, strong random number generators that
exhibit high statistical quality and can withstand cryptanalysis
efforts are keenly sought. Such strong random number
generators constitute an important building block in the design
and testing of high quality crypto-systems [3].

Generally random numbers can be truly random TRN,
pseudo-random PRN or quasi-random QRN. Truly random
numbers are unpredictable. Their generation stems from
random physical or natural phenomena, such as radioactive
decay, amplified noise generated by a resistor or a semi-
conductor diode, fed to a comparator or Schmitt trigger and
then the output is sampled to get a series of bits which are
statistically independent or random [4].

Adi A. Maaita is with the Faculty of Information Technology, Isra

University, Amman, Jordan (phone: 00962798144676; e-mail:
adi.maaita@iu.edu.jo,

Hamza A. A. Al_Sewadi is with the Faculty of Information Technology,
Isra University, Amman, Jordan (phone: 00962795906054, e-mail:
alsewadi@hotmail.com).

Pseudo-random numbers generators, also known
as deterministic random bit generators, are computer programs
that generate a sequence of numbers whose properties
approximate the properties of sequences of random numbers
[5], [6]. These sequences are not truly random as they are
completely determined by a relatively small set of initial
values called seeds; however, they are important in practice
for their speed and reproducibility in number generation.

Quasi-random numbers are sequences in arbitrary
dimensions which progressively cover a d-dimensional space
with a set of points that are uniformly distributed. They are
also known as low-discrepancy sequences [7]. The quasi-
random sequence generators use an interface that is similar to
the interface for random number generators, except that
seeding is not required as each generator produces a single
sequence.

Recently, a new type of generators which are called Lagged
Fibonacci pseudo-random number generators [8], [9] have
become increasingly popular generators for serial as well as
scalable parallel machines. They are proved to be easy to
implement, cheap to compute and they are performing
reasonably well on standard statistical tests especially when
the lag is sufficiently high.

After the brief definitions in Section I, related works will be
summarized in Section II. Section III defines the important
randomness tests that will be executed to examine the
randomness of the generated keys. Section IV explains the
proposed Pseudo-random generator scheme; Section V
includes the implementation of the proposed scheme and the
results of the randomness tests. Finally Section VI concludes
the paper.

II. RELATED WORK

Random number generators may be classified into Integer
generators, sequence generators, integer set generators,
Gaussian generators, decimal fraction generators or row
random byte generators depending if they generate integers,
integer sequence, set of random integers, integers that fits
normal distribution or numbers in the 0 and 1 range with
configurable decimal places, respectively. Each of the
mentioned types is useful for many cryptographic purposes
[10]. Splitable pseudorandom number generators (PRNGs)
were very useful for structuring purely functional programs
that deal with randomness, because they allow different parts
of the program to independently generate random values, thus
avoiding random seed threading through the whole program
[11].

The available pseudorandom number generators (PRNGs)

Deterministic Random Number Generator Algorithm
for Cryptosystem Keys

 Adi A. Maaita, Hamza A. A. Al_Sewadi

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

973

are either secure but slow, or fast but insecure [12]. Besides,
they are either not efficient enough, have inherent flaws, or
lack formal arguments for their randomness. Claessen and
Palka [12] provided proofs in order to show strong guarantees
of randomness under assumptions commonly made in
cryptography.

Mixing secure and fast PRNGs in order to benefit from their
respective qualities was sought recently, for example [14]
proposed chaotic dynamical systems which appear to be good
candidates to achieve this mixture for optimization by
topological chaos and chaotic iterations for hash functions,
[13]. PRNGs based on chaotic iterations were suggested also
for watermarking application [14] and [15].

Chaotic systems have many advantages as unpredictability
or disorder-like, which are required in building complex
sequences, [16], [17]. This is why chaos has been applied to
secure optical communications as suggested by [18].
However, chaotic systems of real-number or infinite bit
representation realized in finite computing precision have the
problems of non-ideal distribution and short cycle length.
Hence infinite space of integers was considered lately leading
to the proposition of using chaotic iterations (CIs) techniques.
Such proposal has to a new family of statistically perfect and
fast PRNGs, [19], where a new version of this family has been
proposed. It uses decimation strategies that lead to
improvements in both random number generation speed and
statistical qualities. Other interesting PRNGs used a new
Iteration Function System (IFS) that measures the sensitivity
of the IFS to certain initial values in order to generate chaotic
random numbers, [20].

PRNGs were also suggested based on iterative
implementation of one-way functions utilizing a randomly
selected start value with a key, [21]. Both the start value and
the key for subsequent iterations were selected from the
already generated random number in the previous iteration.

Another interesting PRNG method was suggested by [22].
It introduced a dynamic system to produce an interesting
hierarchy of random numbers based on the review of random
numbers characteristics and chaotic functions theory. The
authors had carried out certain statistical tests on a series of
numbers obtained from the introduced hierarchy.

Orue et al. [23] suggested cryptographically secure PRNGs
that are based on the combination of the sequences generated
by three coupled Lagged Fibonacci generators, mutually
perturbed. The mutual perturbation method consists of the
bitwise XOR cross-addition of the output of each generator
with the right-shifted output of the nearby generator. The
proposed generator has better entropy and much longer
repetition period than the conventional Lagged Fibonacci
Generator.

This paper proposes a pseudo-random number generation
scheme that is based on Shannon’s concept of confusion and
diffusion. The generated random numbers are to be used for
cryptographic application. It suggests an in house scenario
process that implements a one-time-pad key for secure
communication. The scheme generates continuous strings of
random bit sequences to be used as one time keys

progressively for the subsequent messages.

III. KEY RANDOMNESS TEST

The generated pseudorandom binary sequences can be
tested for randomness by some of the statistical tests outlined
by NIST [7]. These tests will focus on a variety of different
types of non-randomness. The selected tests here include
Frequency (Monobit) test, Frequency test within a Block, the
Runs test, and the test for the Longest-Run-of-Ones in a Block
and will be summarized below. For any of these tests the P-
value is calculated and compared against the level of
significance α (whose value is commonly set to about 0.01 for
cryptographic applications). α is defined as the probability that
the generated number is not random when it is really random
and P-value is the probability that a perfect random number
generator would have produced a sequence less random than
the sequence that was tested, given the kind of non-
randomness assessed by the test [7]. The criteria is if P-
value>=α, the sequence appears to be random but if P-
value<α, then the sequence appears to be non-random.

A. Frequency (Monobit) Test:

It tests the proportion of zeroes and ones for the entire
sequence. The purpose of this test is to determine whether the
number of ones and zeros in a sequence are approximately the
same as would be expected for a truly random sequence.

For the purpose of testing the randomness of a number
with a bit string length of n bits, such that = b1, b2… ,bn, an
observed value Sobs is used as a test statistic which is defined
by (1).

n

S
S n

obs 
 (1)

where Sn is the sum of all string bits after converting zeros and
ones to -1 and +1, respectively.

The P-value for this test is calculated by (2)









n

S
erfcvalueP obs (2)

where erfc is the complementary error function [7]

B. Frequency Test within a Block test:

It tests the proportion of 1’s within M-bit blocks. The
purpose of this test is to determine whether the frequency of
1’s in an M-bit blocks is approximately M/2, as would be
expected under an assumption of randomness. The P-value is
calculated by (3):

  2/)(,2/ 2 obsNigamcvalueP  (3)

where igamc is the incomplete gamma function, N is the
number of M-bit blocks to be tested, and χ2(obs) is the chi
function of the observed proportion of 1’s within a given M-
bit block given by (4).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

974

)
2

1
1

(4)(
1

1
)1(

2 











N

i

M

j
i

M

M

Mobs


 (4)

C. The Runs Test:

It tests is the total number uninterrupted sequence of
identical bits, i.e. whether the number of runs of 1’s and 0’s of
various lengths is as expected for a random sequence. This test
indicates the speed of 1’s and 0’s whether it is too fast or too
slow. The P-value is calculated by (5):


















)1(21

)1(2)(





n

nobsV
erfcvalueP n (5)

Where Vn(obs) is the total number of run across n and is the
pre-test proportion in the input sequence given by (6):

n
j j





 (6)

D. Longest-Run-of-Ones in a Block Test

It tests the longest run of 1’s within M-bit blocks, and show
whether it is consist with the length of the longest run of 1’s
that would be expected in a random sequence. The P-value is
calculated by (7) and χ2(obs) is a measure of matching
between observed longest run length within M-bit blocks with
the expected longest length within M-bit blocks, given by (8):









 2

)(
,

2

2 obsK
valueP

 (7)







K

i i

ii

N

N
obs

0

2
2)(

)(

 (8)

Where νi is the frequencies of the longest runs of 1’s in each
block categorized for i=0 to K while the values of K and N are
determined by the value of M in accordance with the pre-set
Table I.

TABLE I

PRE-SET VALUES FOR M, K AND N WITHIN THE NUMBER

Minimum key length n M K N
128 8 3 16
6272 128 5 49

750 000 10000 6 75

IV. PSEUDORANDOM NUMBER GENERATION METHODOLOGY

This work proposes a scheme for pseudorandom number
generator (PRNG) that combines bitwise logical operation and
bits manipulation in order to fulfill the confusion and diffusion
principle. It starts with a randomly selected input key (seed)
that consists of any combination of letters (lower or upper
case) and numbers (i.e. a b c … z, A B C … Z , _ , 0 1 2 …
9). This seed can be exchanged between sender and receiver
publicly but would even better if it is exchanged secretly.
They are replaced by their ASCII code binary representation
as they enter to the PRNG. The length of this key is decided
by the cryptographic system that is going to be implemented,

for example, the 64 bits key for DES needs 8 characters and
the 128 bits key for AES needs 16 characters, and so on. The
work flow diagram of suggested PRNG scheme is illustrated
in Fig. 1.

Fig. 1 Work flow diagram for the proposed PRNG

Prior to the operation of the proposed PRNG, the characters

of the supplied key are converted to ASCII codes
representation, and then the following steps are performed
according to the work flow of Fig. 1.
Step 1. The selected key characters are first replaced by their

binary representations. Let the entered key consists of
n-characters, then the length of this key will be 8*n (i.e.
n-bytes).

Step 2. Abitwise XOR operations are performed on the bit
blocks of each two successive bytes, i.e. (1stXOR2nd)
replaces the 1stbyte, (2nd XOR 3rd) replaces 2nd
character, etc., until the last byte where it is XOR’ed
with the first one, or (nthXOR1st) replaces the nth-byte,
as given by (9):

i.e. niXORi thth mod)1( , for i=1 to n (9)

Step 3. Successive bytes are exchanged with each other in
pairs. However, if n is odd number, then the last byte is
left unaltered.

Step 4. The resulting bit string of the previous step is divided
into halve, left and right each of 4*n bits length. The
resulting bit sequence of 8*n can be taken as the first
pseudorandom random key K1.

Step 5. The generated key in step 4 can be fed back as an input
to step 2 in order to generate next random key.

Step 6. In order to generate more keys, steps 2-5 can be
repeated as many as required.

A computer program is written to perform these steps
written in C# language and tabulate the results in excel sheet
together with their randomness tests in order to be ready for
use in any cryptographic system.

Security of the key agreement:
Mixing of bitwise Boolean operations (XOR), bitwise and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

975

operations oriented (manipulation) serves to avoid purely
algebraic attacks and the purely bit oriented attacks and
prevents the mathematical behavior of the scheme from being
shaped easily. They both contribute to a great mathematical
complexity together with high computational efficiency.
Moreover, only very efficient operations are used, bitwise
Boolean operations, and bits displacements, and they are both
of easy implementation either by hardware or by software.

This method generates pseudo random numbers by
selecting a certain piece of secure information. For the users
involved in this system to generate these random numbers,
they must agree upon this information in advance to enable
them to generate their own random numbers which are then
used in cryptographic systems.

The users also agree upon the predefined structure of this
secret information or the key. The structure in this method
consists of a certain number of digits constituting certain
digital data that can either be represented as characters or as a
bit sequence. The agreement upon the size (n) of this key,
which depends practically on the cryptographic system that is
intended to be used with, represents one of the constraints of
this structure. And another constraint is the method used for
splitting this piece of information for the various operations.
The secure information is dealt with at byte level segments.
Obviously each byte contains different digital contents.

The algorithm generates the first pseudorandom key at the
end of the first run, however to generate more random
numbers, further runs can be done. Each of the successive runs
takes the previously generated random key as the input.
Therefore, the difficulty and complexity of the generated keys
will increase. The acceptance strength of the generated
random numbers will be decided by the tests that will be
performed on the results in the following section.

V. IMPLEMENTATION AND RESULTS

A Computer program is written in C# language for the
proposed PRNG algorithm illustrated in Fig. 1. It is designed
to accept a seed of any number of characters and generate as
many random numbers as practically required with any length
of bit sequence. It has been experimented for the generation
and testing of random keys of 64, 128, and 512 bits lengths.
An example demonstrating the implementation steps for the
algorithm execution and elementary randomness tests are
included in the next subsection, then four elaborate tests were
carried out and their results were listed in next subsection.

A. PRNG Implementation

The following example can illustrate the implementation of
the scheme for a 64 bits key sequence, i.e. the seed consists of
8 characters. Let us assume that step 1 produce the binary
representation of the seed characters to be:

“10001100 10101010 00110011 10010001 01000010
00100011 00010100 10100101”.
Step 2 produces:

“00100110 10011001 10100010 11010011 01100001
00110111 10110001 00101001”,
Then step 3 produces:

“10011001 00100110 11010011 10100010 00110111
01100001 00101001 10110001”.
And finally step 4 will produce:

“00110111 01100001 00101001 10110001 10011001
00100110 11010011 10100010”.

This is the generated pseudorandom number of the first
round. Then more random numbers can be generated by
repeating the PRNG algorithm using the generated number of
a round as input to the algorithm for the next round.

To test the randomness of the generated random number,
the following simple frequency test can be conducted. This
test uses the chi-function formula given in (10):

2

102)(

n

nn 
 (10)

where n0 and n1are the numbers of 0’s and 1’s in the generated
key sequence, respectively. Good sequence in the generated
random number should have χ2 values in the range
0<χ2<3.84[24].

Since χ2 = (29-35)2/64 = 0.5625 which is < 3.84 for the
above example, therefore it is considered as acceptable
random number.

Counting the 0’s and 1’s in the generated key in the above
example resulted into n0 = 34 and n1 = 30, therefore χ2 = (34-
30)2/64 = 0.25, and since this value is < 3.84, hence it is
considered as acceptable random number.

Other test like frequency (monobit) can also be conducted,
for the above example above.

The string length n = 64 and the sum of all number string
bits sequence after converting 0’s and 1’s to -1 and +1,
respectively, Sn is determined as

Sn =-1-1+1+1-1+……+1-1+1-1-1-1+1-1 = - 4.
Then from (1), the test statistic observed value

64/6obsS = 0.5.

Now applying (2), the P-value is calculated and it is here
P-value=erfc (0.5/8) = 0.9296
Then since 0.9296is > 0.01, the number is random

otherwise it is not.
Another series test for the frequency of occurrence of

sequences of two bits, i.e. 00, 01, 10, and 11 can be conducted.
For the above example are n00=16, n01=16, n10=17 and n11=10
and the number of 1’s and 0’s in the key sequence n1=30 and
n0=34.

Applying the chi-function for this test which is given by
(11) [24]:

1)(
2

)(
1

4 2
0

2
1

2
11

2
10

2
01

2
00

2 


 nn
n

nnnn
n

 (11)

The criterion for good randomness sequence is χ2 ≤ 5.99.

Applying (11) results into

99.596429.101))34(30(
64

2
)11171815(

164

4 2222222 




Therefore, this key passes the randomness test.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

976

B. PRNG Testing

The potential problems with deterministic generators are
their failure in statistical pattern-detection tests. These
problems include lack of distribution uniformity, correlation
of successive values; output sequence has poor dimensional
distribution, and shorter seed state. The random sequences
generated by the proposed PRNG are tested for randomness by
the four tests processes outlined in Section III. Although, the
tests were done for 64, 128, 1nd 512 bits key sequences,
however, it can be practically done for any key length.

Table II lists the calculated percentages of successfully
generated random key sequences when the used seed for
generating random numbers is only numeric’s, i.e. digits 0, 1,
2, … , 9. The tests included are explained four tests in section
3 namely; frequency (monobit) test, Frequency within a Block
test, Runs test, and Longest-Run-of-Ones in a Block test. This
table lists the results for three commonly required random key
sequences; 64, 128, and 512 bits. However, Table III lists the
percentages of successfully random keys generated using
alphanumeric seed (i.e. both upper and lower case letters in
addition to the numbers). It is also conducted for the same
lengths and tests selected.

TABLE II

SUCCESSFUL RANDOMNESS FOR ONLY NUMERIC KEYS

Test
PERCENTAGE OF SUCCESSFUL

RANDOMNESS (NUMERIC SEED ONLY)
n=64n=128n=512

Frequency (monobit) 73% 40% 13%

Frequency within a block 84% 80% 23%

The Runs test 91% 62% 23%

Longest run of 1’s in a block N/A 99% 99%

TABLE III

SUCCESSFUL RANDOMNESS FOR ALPHANUMERIC KEYS

Test
PERCENTAGE OF SUCCESSFUL RANDOMNESS

(ALPHANUMERIC SEEDS KEYS)
n=64n=128n=512

Frequency (monobit) 96% 89% 82%

Frequency within a block 98% 99% 98%

The Runs test 100% 99% 89%

Longest run of 1’s in a block N/A 98% 98%

The results listed in this section have shown that the

proposed PRNG algorithm effectively generates key
sequences with a considerably acceptable randomness. The
randomness tests showed that increasing the number of rounds
to generate more keys enhances the efficiency of random key
generation for cryptographic system applications. The scheme
is characterized by its simple yet practical design as it does not
have complicated and lengthy exponentiation processes. This
leads to more efficient software and hardware
implementations.

VI. CONCLUSION

An algorithm for computationally fast, cryptographically
secure pseudorandom key generator has been proposed and
described in this paper. It is based on mixing bitwise Boolean
operations with bits manipulations and displacements for

secret splitting. The implemented randomness tests have
shown that the generated sequences were unpredictable and
passed successfully stringent test suites. It obviously relies on
the sender/receiver agreement protocol regarding the
cryptosystem they are using, the key length, number of keys
and way of their generation. Therefore the required random
keys will be securely generated accordingly.

The algorithm was programmed in C# language on a 64 bits
word length computer using only bitwise XOR and blocks
exchanges. Hence excellent performance was achieved.
Besides, the program produces as many number of random
sequence keys as required, in which each random sequence is
generated from a random one.

REFERENCES
[1] B. Schneier, “Applied cryptography: protocols, algorithms, and source

code in C,” Second Edition, John Wiley & Sons, 1996.
[2] D. Dilli, Madhu S., “Design of a New Cryptography Algorithm using

Reseeding -Mixing Pseudo Random Number Generator,” IJITEE, vol.
52, No. 5, 2013

[3] K. Marton, A. Suciu, C. Sacarea, and Octavian Cret, “Generation and
Testing of Random Numbers for Cryptographic Applications,”
Proceedings of the Ramanian Academy, Series A, Vol. 13, No. 4, 2012,
PP 368–377.

[4] S. Martain, “Testing of True Random Number Generator Used in
Cryptography,”International Journal of Computer Applications IJCA,
Vol.2, No. 4, 2012.

[5] Wikipedia, “Pseudorandom number generator”, Last visited December
2014.

[6] D. Dilli, and S. Madhu, “Design of a New Cryptography Algorithm
using Reseeding -Mixing Pseudo Random Number Generator,” IJITEE,
vol. 52, no. 5, 2013.

[7] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M.
Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A
Statistical Test Suite for Random and Pseudorandom Generators for
Cryptographic Application,” NIST Special Publication 800-22, 2001.

[8] P. Burns, “Lagged, Fibonacci Random Number Generators”, GS 510,
fall 2004, http://lamar.colostate.edu/~grad511/lfg.pdf.

[9] A. B. Orue, F. Montoya, and L. H. Encinas, “Trifork, a New
Pseudorandom Number Generator Based on Lagged Fibonacci Maps,”
Journal of Computer Science and Engineering, vol. 1, no. 10, 2010.

[10] Random.org (Randomness and Integrity Service LTD),
[11] https://www.random.org/integers/, Last visited 3/1/2015.
[12] F. W. Burton, and R. L. Page, “Distributed random number generation”,

Journal of Functional Program, vol. 2, no. 2, 1992, PP 203–212.
[13] K. Claessen, and M. Palka, "Splittable Pseudorandom Number

Generators using Cryptographic Hashing," Proceedings of Haskell
Symposium, 2013, PP 47-58.

[14] J. M. Bahi, and C. Guyeux, “Topological chaos and chaotic iterations,
application to hash functions,” IEEE World Congress on Computational
Intelligence WCCI’, Barcelona, Spain, July 2010. Best paper award, PP
1–7,

[15] J. Bahi, C. Guyeux, and Q. Wang, “A novel pseudo-random generator
based on discrete chaotic iterations,” INTERNET’09, 1-st International
conference on Evolving Internet, Cannes, France, August 2009, PP 71–
76.

[16] J. Bahi, C. Guyeux, and Qianxue Wang, ”A pseudo random numbers
generator based on chaotic iterations; Application to watermarking,”
International conference on Web Information Systems and Mining,
WISM 2010, vol. 6318 of LNCS, Sanya, China, October 2010, PP 202–
211.

[17] Y. Hu, X. Liao, K. W. Wong, and Qing Zhou, “A true random number
generator based on mouse movement and chaotic cryptography,” Chaos,
Solitons & Fractals, vol.40, no. 5, 2009, PP 2286–2293.

[18] L. De Micco, C. M. Gonzaez, H.A. Larrondo, M.T. Martin, A. Plastino,
and O.A. Rosso, “Randomizing nonlinear maps via symbolic dynamics,”
Physica A: Statistical Mechanics and its Applications, vol. 387, no. 14,
2008, PP 3373–3383.

[19] L. Larger, and J. M. Dudley, “Nonlinear dynamics Optoelectronic
chaos,” Nature, vol. 465, no. 7294, 2010, PP 41–42.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

977

[20] Q. Wang, J. Bahi, C. Guyeux, and X. Fang, “Randomness quality of CI
chaotic generators; application to internet security,” INTERNET’2010.
The 2nd International Conference on Evolving Internet, Valencia, Spain,
September 2010. IEEE Computer Society Press. Best Paper award, PP
125–130.

[21] H. B. Neumann, S. Scholze, and M. Voegeler, “Method of generating
pseudo-random numbers,” US 20090150467 A1 , Jun 11, 2009.

[22] M. N. Elsherbeny, and M. Raha, “Pseudo –Random Number Generator
Using Deterministic Chaotic System,” International Journal of Scientific
and Technology Research,” vol. 1, no. 9, Oct. 2012.

[23] S. Behnia, A. Akhavan, A. Akhshani, and A.Samsudin, “A novel
dynamic model of pseudo random number generator,” Journal of
Computational and Applied Mathematics –J COMPUT APPL MATH,
vol. 235, no. 12, 2011, PP 3455-3463.

[24] W. Bhaya and W. Mahdi, “ Fingerprint Security Approach for
Information Exchange on Networks,” European Journal of Scientific
Research, vol. 123, no 2, 2014, PP 169-181.

Hamza A. A. Al_Sewadi is currently a professor at the
Faculty of Information Technology, Isra University
(Jordan). He got his B.Sc. degree in 1968 from Basrah
University, Iraq, then M.Sc. and Ph.D. degrees in 1973 and
1977 respectively, from University of London(UK). He
worked as associate professor at various universities such as
Basrah University (Iraq), Zarqa University and Isra

University (Jordan), visiting professor at University of Aizu (Japan). His
research interests include Cryptography, Steganography, Information and
Computer Network Security, Artificial Intelligence and Neural Networks.

Adi A. Maaita is currently an assistant professor at the
Faculty of Information Technology, Isra University. He
received his B.Sc. degree in 2002 from the University of
Jordan (Jordan), his M.Sc.in 2003 from the New York
Institute of Technology (Jordan).Then received his Ph.D.
from the University of Leicester (UK) in 2008. His
research interests include Cryptography, Steganography,

Information and Computer Network Security, Genetic Algorithms, Neural
Networks, and Software Modeling.

