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Abstract—This paper presents a model for a modified T-junction 

device for microspheres generation. The numerical model is 

developed using a commercial software package: COMSOL 

Multiphysics. In order to test the accuracy of the numerical model, 

multiple variables, such as the flow rate of cross-flow, fluid properties, 

structure, and geometry of the microdevice are applied. The results 

from the model are compared with the experimental results in the 

diameter of the microsphere generated. The comparison shows a good 

agreement. Therefore the model is useful in further optimization of the 

device and feedback control of microsphere generation if any. 

 

Keywords—CFD modeling, validation, microsphere generation, 

modified T-junction.  

I. INTRODUCTION 

ICROSPHERES have many important applications: drug 

delivery system (DDS), cosmetics, food, and other 

industrial uses. For the recent decades, microsphere produced 

with microfluidic technology has gathered a tremendous 

attention, such as T-junction [1]-[10], membrane emulsification 

[11]-[13], and flow focusing [14], [15]. In the original 

T-junction approach, the size of middle flow is determined by 

the size of the microchannel, and this means that the size of 

microspheres could only be adjusted in a very small range. To 

overcome this disadvantage, a modified T-junction device was 

developed by Song in 2011 in our group [16], as shown in Fig. 

1. By introducing the sheath flow, the size of the middle flow is 

not only contributed by the size of microchannel but also the 

sheath flow rate. In this way, a tremendous economic value as 

well as the need of recycling the device has been achieved. 

Although it has been proved that the controllability and 

uniformity of the microspheres generated using this device is 

acceptable [16], how the flow rate, channel size, and fluid 

property may influence the microspheres generation process 

has not been understood very well. Primary work has been done 
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to study the effects from capillary number on the droplet 

formation in an analytical manner [17]. However, this model 

only considers part of the device structure.  

The model in this paper considered the complete structure of 

the modified T-junction device. And this model could be 

further used for optimization and control the microsphere 

generation. Experiments were conducted to validate the model.  
 

 

Fig. 1 Schematic diagram of a modified T-junction device: Three 

flows are involved: middle-flow, sheath-flow, and cross-flow. The 

fluid of sheath-flow and corss-flow are the same, which is immiscible 

with middle-flow [16] 

II. MATERIALS AND PROPERTIES 

In this work, Poly(lactic-co-glycolic acid) (PLGA) dissolved 

in dichloromethane (DCM) with concentration of 1%, 5%, and 

15%, respectively, were used as dispersed phase. Polyvinyl 

alcohol (PVA) dissolved in distilled water with concentration 

of 1% was used as continuous phase. The physical properties 

are listed in Table I. 
 

TABLE I 

PHYSICAL PROPERTIES OF FLUIDS 

 Concentration (%) Density (g/cm3) Viscosity (Pa.s) 

PLGA 

1 1.329 0.12 

5 1.326 0.19 

15 1.315 0.33 

PVA 1 1 1.702 [18] 

 

PLGA (50/50, inherent viscosity 0.16-0.24 dl/g) was 

purchased from Jinan Daigang Biomaterial Co., Ltd (Jinan, 

Shandong, China), and Evonik Industries AG (Essen, 

Germany). PVA (Mw 85,000-124,000, 99+% hydrolyzed) was 

purchased from Shanghai Lingfeng Chemical Reagent Co., Ltd 

(Shanghai, China). DCM was purchased from Shanghai 

Chemical Reagent Co., Ltd (Shanghai, China). PDMS 

microchannel was fabricated in Shanghai Wenchang Chip 

Technology Co., Ltd (Shanghai, China). 

III. STRUCTURE OF THE DEVICE 

There were two structures of the modified T-Junction in this 

study: modified T-junction with straight channel, and modified 

T-junction with crooked channel, as shown in Fig 2 (a) and (b), 
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respectively. For both structures, all the channels were uniform 

in width and height. The details of the devices are listed in 

Table II. 

 

 

Fig 2 Schematic diagram of modified T-junction device: Channels are 

molded in PDMS. PLGA solutions with different concentrations are 

used: 1%, 5%, and 15%. m: channel width and height. (a) straight 

channel; (b) crooked channel 
 

TABLE II 
STRUCTURE AND DIMENSIONS OF MODIFIED DEVICE 

Device Structure m (µm) 

1 straight 50 

2 straight 75 

3 crooked 50 

4 crooked 100 

IV. THE MODEL OF THE DROPLET FORMATION PROCESS 

A. Governing Equation 

The Level Set (LS) method [19] was used in this study, 

which represents the front profile of the droplet. The LS 

equation could be expressed as  

 
��
�� � � · �	 
 γ� · �ε�	 � 	
1 � 	� ��

|��|�      (1) 

 

where 	
x, t� is the level set function; x is the co-ordinate of 

system. If 	
x, t� � 0.5, it refers to one phase; otherwise it refers 

to the other phase, Further, in the above equation, u is velocity 

(m/s); t is time (s); γ  and ε  are numerical stabilization 

parameters; ε is the thickness of the interface and has the same 

order of the mesh size; γ is the re-initialization parameter, and 

its value is the maximum value of u. 

The Navier-Stokes (NS) equations and the continuity 

equation are the other two governing equations, and they are 

 

ρ ���
�� � u · �u� 
 � ·  �pI � η
�u � 
�u�#�$ � F&�     (2) 

 

� · u 
 0            (3) 

 

where ρ denotes density (kg/m3); η is the dynamic viscosity 

(Pa · s); p is the pressure (Pa). F&� 
 σκδn is the surface tension 

force (N/m3) acting on the interface between two phases, 

where  σ is the surface tension coefficient;  δ is the function 

concentrated at the interface between the two fluids; κ is the 

curvature of the interface which can be defined as κ 
 �� · n, 

where the normal vector n can be written as n 
 ��
|��|. 

The overall density ρ and viscosity η are calculated from: 

 

0ρ 
 ρ1 � 2ρ3 � ρ14	
η 
 η1 � 2η3 � η14	5         (4) 

 

where ρ1, ρ3, η1 and η3 are the densities and viscosities of fluid 

1 and fluid 2, respectively. 

B. Boundary and Initial Conditions 

All the flows (middle-flow, sheath-flow, and cross-flow) 

were assumed to be laminar flows, as this droplet formation 

process was in micron scale. The pressure in the outlet was 0 Pa 

without viscous stress. The boundaries were in no-slip 

conditions.  Q&,  Q7, and  Q8 are the flow rates of sheath-flow, 

middle-flow, and cross-flow, respectively. In this work,  Q7 = Q& = 0.01 ml/min were set to be constants. Fig. 3 illustrates the 

boundary and initial conditions. 9133 and 7815 triangular 

elements were applied for straight and crooked channel 

respectively considering accuracy and computational 

efficiency. 

 

 

(a) 

 

 

(b) 

Fig. 3 Initial conditions for the simulation of the droplet formation 

process: (a) straight channel, (b) crooked channel 
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The numerical simulation was carried on using COMSOL 

Multi-physics 3.5 (COMSOL, Inc., Burlington, MA, USA) 

with the assumption of the two-dimensional and two-phase 

flow. 

C. Experiments 

Four devices were fabricated and tested in the experiment. 

Fig. 4 shows the experimental set-up. Three syringe pumps for 

sheath-flow, middle-flow and cross-flow were connected to the 

microchannel device controlling the flow rate of the fluids, an 

optical microscope was used to observe microsphere 

generation, and the images of microspheres were taken by a 

computer system connected to the microscope. A commercial 

image processing software was applied to measure the size of 

microspheres using the images Fig. 4 shows the experimental 

set-up. 

 

 

TABLE III 
DISTRIBUTION OF VELOCITY PROFILES FROM THE SIMULATION STUDY 

1. m = 50 µm, straight channel, Q8 = 0.02 ml/min, PLGA concentration: 1% 2. m = 75 µm, straight channel, Q8 = 0.03 ml/min, PLGA concentration: 15% 

  

3. m = 50 µm, crooked channel, Q8 = 0.02 ml/min, PLGA concentration: 5% 4. m = 100 µm, crooked channel, Q8 = 0.02 ml/min, PLGA concentration: 1% 

  

5. m = 50 µm, crooked channel, Q8 = 0.03 ml/min, PLGA concentration: 15% 6. m = 100 µm, crooked channel, Q8 = 0.03 ml/min, PLGA concentration: 5% 
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Fig. 4 Experimental set-up 

V. RESULTS WITH DISCUSSION 

Results of velocity distribution profiles are put in Table III. 

Table IV and Fig. 5 conclude the numerical and experimental 

results of microsphere mean and standard (std) deviation of the 

sizes of microspheres. It is clear that the numerical and 

experimental results have a good agreement except for group 1, 

in which the calculated mean size of microsphere is twice the 

experimental one. This is probably caused by the unsteady 

environment during the experiments, or the channels in the 

devices might be clogged by PLGA after DCM has evaporated, 

leading to the dramatic disease of the size of the microspheres. 

Second, the structure of the device, channel size, PLGA 

concentration, and the cross-flow rate all may affect the 

microsphere size. 
 

TABLE IV 

NUMERICAL AND EXPERIMENTAL RESULTS OF MICROSPHERE MEAN SIZE  

Experiment 
Diameter of microspheres (µm) 

Numerical Experimental 

1 21.33 10.98±1.81 

2 41.57 39.42±4.73 

3 23.18 21.04±2.21 

4 49.05 47.98±4.72 

5 45.81 43.15±3.22 

6 33.95 35.56±3.83 

 

 

Fig. 5 Diameter of the microspheres from numerical and experimental 

results 

 

Fig. 6 is an optical image of microspheres generated in the 

device with m = 50 µm, crooked channel, Q8 = 0.03 ml/min. 

 

Fig. 6 Optical image of microspheres generated. m = 50 µm, crooked 

channel, Q8 = 0.03 ml/min 

VI. CONCLUSION 

The study presented in this paper was on the modeling of 

microspheres generation process in the context of the modified 

T-junction. Results obtained by this model were compared with 

experimental results. From the comparison, it can be concluded 

that a good agreement has been achieved. Thus the model is a 

reliable alternative of the measurement, which can be used to 

optimize the process parameters of the fluid and the device. 

Additionally, attentions need to be concentrated to the clog 

issue of the device in order to improve the accuracy and 

recyclability of the device.  
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