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 
Abstract—This paper presents a novel integrated hybrid 

approach for fault diagnosis (FD) of nonlinear systems. Unlike most 
FD techniques, the proposed solution simultaneously accomplishes 
fault detection, isolation, and identification (FDII) within a unified 
diagnostic module. At the core of this solution is a bank of adaptive 
neural parameter estimators (NPE) associated with a set of single-
parameter fault models. The NPEs continuously estimate unknown 
fault parameters (FP) that are indicators of faults in the system. Two 
NPE structures including series-parallel and parallel are developed 
with their exclusive set of desirable attributes. The parallel scheme is 
extremely robust to measurement noise and possesses a simpler, yet 
more solid, fault isolation logic. On the contrary, the series-parallel 
scheme displays short FD delays and is robust to closed-loop system 
transients due to changes in control commands. Finally, a fault 
tolerant observer (FTO) is designed to extend the capability of the 
NPEs to systems with partial-state measurement. 
 

Keywords—Hybrid fault diagnosis, Dynamic neural networks, 
Nonlinear systems.  

I. INTRODUCTION 

NCREASING demand on reliable operation of safety-
critical control systems such as intelligent vehicles and 

future planned autonomous spacecraft/probes has made fault 
detection, isolation, and identification an essential component 
of an autonomous system. There is a high demand for 
developing intelligent systems that are able to autonomously 
detect and isolate the location of faults occurring in different 
components of complex systems. Furthermore, accurate 
estimation of fault severities is essential for development of 
reliable autonomous recovery procedures as well as 
component health monitoring and condition-based 
maintenance, where accurate estimation of a component’s 
health state and consequently prediction of its remaining 
useful life is of utmost importance.   

 During the past two decades, a number of approaches have 
been developed for fault detection and isolation (FDI) of both 
deterministic and stochastic nonlinear systems. Many 
techniques utilize either analytical model-based [1]-[3] or 
learning-based methodologies [3]-[5] using qualitative or 
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quantitative modeling. The problem of FDI of nonlinear 
stochastic systems often represented by general hidden 
Markov models have been solved using adaptive change 
detection [6], likelihood ratio approach with adaptive Monte 
Carlo as well as particle filters [7], [8], and entropy 
optimization filtering [9]. However, only few works have been 
reported in the literature that exploits both mathematical 
models of a system and adaptive nature of intelligent 
techniques such as neural networks [10]-[12]. Furthermore, 
the importance of utilizing an integrated framework to 
simultaneously achieve FDI and fault severity estimation has 
not been fully addressed.  

The fault diagnosis technique proposed in this work is 
essentially a hybrid approach due to the use of neural 
networks in conjunction with a mathematical model of the 
system as a basis for fault modeling. Fault modeling can be 
accomplished in a variety of ways and perspectives. For 
example, [12], [9] have modeled a fault as an unknown 
nonlinear function of the system states and inputs. On the 
other hand, neural networks are used in [5] to identify the full 
system dynamics including nominal and faulty dynamics, 
under different fault scenarios. The fault modeling approach 
adopted in this paper is based on the notion of fault parameters 
(FP) as defined in [11] to parameterize a known mathematical 
model of the system with unknown parameters that reflect the 
occurrence of faults.  

In this paper, a new integrated solution to the problems of 
nonlinear FDI and fault severity estimation is proposed. By 
integrating fault detection, isolation, and severity estimation 
into a single module, our proposed solution reduces the 
structural complexity of conventional fault diagnosis schemes. 
The idea of an integrated framework for simultaneous FDI and 
fault severity estimation has been previously proposed by, for 
example [12] for a special class of faults where the state 
equation is an affine function of the FPs. Moreover, Xia [12] 
assumes full-state measurement (as can be seen from equation 
(1) of their paper). Also, conventional methods consist of a 
combination of independent or interconnected subsystems 
such as residual post-processing subsystem and parameter 
estimation subsystem that perform one of the above three 
tasks.  

The idea of using a bank of estimators/observers/models for 
fault detection and isolation has been previously pursued in 
the literature by many researchers (see for example, [11], [14]-
[18]). However, none of them have addressed the problem of 
fault severity identification. In this paper, we have developed a 
bank of estimators that allow accurate identification of fault 
severity while the fault is being detected and isolated. More 
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specifically, once a bank of parameterized fault models is 
constructed, a corresponding bank of neural parameter 
estimators (NPE) is designed to estimate fault parameters and 
thus accomplish fault identification. Therefore, even in terms 
of methodology, the proposed hybrid fault diagnosis approach 
can be viewed as an integration of two well-known fault 
diagnosis methodologies including multiple-model (MM) 
approach and parameter estimation method.  

Furthermore, two NPE structures, namely series-parallel 
and parallel, are proposed with their respective fault isolation 
policies, where each structure possesses an exclusive set of 
desirable properties. For example, the proposed parallel 
scheme is extremely robust to measurement noise, hence 
making it suitable for low SNR applications. On the other 
hand, the series-parallel scheme displays very fast 
convergence rates desirable for systems requiring short delay 
in fault diagnosis. Thus, the choice of the appropriate FDI 
structure really depends on the specifications and requirements 
of the specific problem at hand.  

The robust parallel FDII scheme proposed in this work is 
an entirely novel development in the literature. One of the 
main contributions of this work is the integration of fault-
tolerant observers with the fault parameter estimators in order 
to accomplish FDII under partial-state measurements. To the 
best of our knowledge, this has not been pursued by any 
previous work in the literature. On the contrary, [11] and [10] 
have previously developed FDI techniques similar to the 
series-parallel scheme. However, the series-parallel scheme 
proposed in this paper possesses the following three novelties: 
(i) more solid fault isolation results due to the first-time use of 
a bank of single-parameter fault models (4) extracted from the 
multi-parameter fault model (3) employed by [11], (ii) 
remarkably simpler neural network architecture and adaptation 
laws than those employed by [11] and [10], which makes the 
proposed methodology more suitable for real-time 
implementation, and (iii) added fault identification capability 
– the simulation results presented in [11] do not demonstrate 
such capability.  

II. PROBLEM DEFINITION AND FAULT MODELING 

In this section, the problem of fault diagnosis in 
components of a general nonlinear system is formally stated. 
Consider a nonlinear system that is described by the following 
discrete-time state space representation: 

 
   



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


kkk

kkkkk
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where n
kx   is the system state vector, nrnf : , is 

a smooth nonlinear vector-valued function (or vector field) on 
its domain, r

k Ru   is the control input vector, m
k Ry   is the 

system output vector, and 
kw  and 

k  represent system 

disturbances and measurement noise, respectively. The vector 
field f  represents the nonlinear dynamics and the matrix H  

represents the linear output equation of the nominal model of 

the system. The state-dependent function  .  essentially 

represents the channel over which the external disturbances 
are applied to the system. It is assumed that the disturbances 
are bounded signals, that is: 
 

NkNDw kk  maxmax ,               (2) 

 
Under the full-state measurement assumption the output 

equation in (1) can be redefined as
k k ky x   , whereas under 

the partial state measurement the general output equation (1) is 
considered. 

Our objective is to design and develop a fault diagnosis 
scheme that is capable of autonomously detecting the 
presence, isolating the location, and identifying the severity of 
faults in the system within a unified framework. We make the 
following assumptions regarding the occurrence of faults in 
the system, which comprise the basis for fault diagnosis 
design, development, and verification. 
Assumption (i). The control signals and the state vector 

remain bounded prior to and after the 
occurrence of a fault.  

Assumption (ii). The faults do not occur precisely at the same 
time; i.e., at each instant of time only one 
fault may occur in the system. Note that this 
does not exclude existence of concurrent 
faults in the system.  

Assumption (iii). The rate of variation of fault severities is 
“slow” compared to the dynamics of the 
system states.  

Assumption (iv). The input and output signals in model (1) 
satisfy the so-called persistent excitation 
condition to ensure that the parameter 
estimators that are designed subsequently 
guarantee convergence to their true values. 

It should be noted that this is a reasonable assumption for 
most engineering systems. Because for abrupt faults, once 
they occur it is not likely that their severity changes over time 
and for incipient faults, since they occur due to wear and tear 
of system components, the fault growth rates are often much 
slower than system dynamics.  

Generally speaking, different models of a faulty system 
may be constructed. In this paper, following the work of [11]- 
[20], we have assumed that the system component faults are 
reflected in the physical system parameters. Thus, the 
presence of faults in the system can be represented by changes 
in the system parameters. The faulty system is described by 
the following parameterized nonlinear model, called multi-
parameter fault model: 
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where L

k   is the fault parameter vector containing L  fault 

elements. Furthermore, 
Hk    entails the absence of faults in 

the system, i.e., healthy mode of operation. The value of 
H
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depends on the way the FP vector affects the system model 
parameters in (3); that is being either additive or 
multiplicative. The representation adopted in this paper is the 
additive form, hence making   10  LH . 

The fault model given by (3) enables one to state the 
problem of nonlinear fault diagnosis in the form of an on-line 
nonlinear parameter estimation problem, where the unknown 
fault parameters are being estimated by using system inputs 
and measurements.  

Within our proposed fault diagnosis framework, fault 
detection is accomplished by first estimating the fault 
parameter vector using system input-output measurements and 
then comparing the estimated parameters against

H . For fault 

isolation and fault severity estimation purposes, however, we 
propose a bank of parameter estimators where each estimator 
in the bank is designed based on a single-parameter fault 
model as described below.  

Consider the multi-parameter fault model given by (3) with 
L  fault parameters. One can extract L  single-parameter 
models, Lii ,...,1,  , from model (3) as follows: 
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: 1 
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A bank of L  parameter estimators may then be designed 
based on each single-parameter fault model in (3), where the 
ith parameter estimator will essentially estimate the ith fault 
parameter, namely i

k . While [8] has introduced subset 

parameter estimation for detection and isolation of faults, in 
our opinion, the extraction of single-parameter fault models 
from the multi-parameter fault model to enable fault severity 
estimation (in addition to FDI) is introduced here for the first 
time in the literature. 

To overcome the shortcomings in estimating the parameters 
of a nonlinear system with arbitrary disturbance/process noise 
distributions, we integrate multi-layer feed-forward (static) 
neural networks with the true nonlinear dynamical model of 
the system in our proposed nonlinear parameter estimation 
scheme. The estimation of parameters is then accomplished 
based on an on-line minimization of instantaneous output 
estimation error as described in the next sections.  

III. PROPOSED FDII USING SERIES-PARALLEL ARCHITECTURE 

OF NEURAL PARAMETER ESTIMATORS AND FULL STATE 

MEASUREMENT 

Fig. 1 depicts the structure of a bank of series-parallel NPEs 
designed and developed to simultaneously achieve the three 
objectives of fault detection, isolation, and fault severity 
estimation. The residual signals , 1,...,i

kr i L  and the FP 

estimates Lii
k ,...,1,ˆ   comprise the outputs of the series-

parallel scheme and the three tasks of FDII are accomplished 
by examining these quantities. The fault detection and 
isolation (FDI) decision logic of this scheme is presented in 
Section III B. 
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Fig. 1 Series-Parallel scheme of the proposed hybrid FDII approach 
 
The series-parallel structure is composed of two main 

subsystems: (1) the feed-forward (static) neural networks 
(FFNN) (i.e., the NPEs) utilized to adaptively approximate the 
nonlinear FP estimation functions and (2) the nonlinear single-
parameter fault models given by (4) utilized for state/output 
estimation (or prediction) based on the estimated FPs. 

Accordingly, at each time-step k , the following two sets of 
calculations are performed for each NPE: 

1) Calculation of FP Estimates 

    LiVWyg i
k

i
kk

i
kk ,...,1;,,ˆ ,1                     (5) 

 

  11 kkk uyy                                (6) 

 
where i

kk ,1ˆ   is the estimate of the ith fault parameter at time

1k  calculated at time k, i
k

i
k VW ,  are respectively the output 

and the hidden layer weight matrices of the ith NPE, 
ky is the 

input vector of the NPEs, and g  is the nonlinear mapping 

implemented by a single hidden layer FFNN with linear 
activation functions for the neurons at the output layer and 
nonlinear activation functions for the neurons at the hidden-
layer. Thus,  
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where (.)  is the activation function of the hidden-layer 

neurons that is usually set to be a sigmoidal function: 
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where i

jkV  is the jth row of i
kV and  k

i
kj yV  is the  jth  element 

of  k
i

k yV . 
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2) State/Output Estimation (or Prediction) Based On FP 
Estimates 

In this step, the states and consequently the outputs of the 
system are estimated (or predicted) by the deterministic part of 
the single-parameter fault models in (3) (i.e., without 
unknown external disturbances 

kw  and measurement noise
k ) 

and using the FP vector estimate from step 1, namely
kk ,1ˆ  . 

Hence, 
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where 11   kk yx  are the measured states of the system.  

A. Weight Update Laws of the Series-Parallel Scheme 

The weights of the NPEs are updated with the objective of 
minimizing the weighted 

2L  norm of the instantaneous output 

estimation error vector defined as: 
 

ˆ ; 1,...,i i
k k ky y y i L                                      (10) 

 

Thus, the objective function, at time-step k , of the ith NPE is 
the instantaneous output error: 
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where nnQ   is the estimation error weight matrix. The 

weights of the NPEs are updated by using the well-known 
gradient descent (GD) algorithm:     
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where Lii

v
i
w ,...,1;0,   are the learning rates.  

In order to derive the weight update laws, let us define for
Li ,...,1 ; 

k
i

k
i

kv yVnet  , and  k
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k
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kw yVWnet  . Thus, the partial 

derivatives i
k

i
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k
i
k VJ   can be computed according to: 
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The partial derivative Lix i
kk

i
k ,...,1;ˆˆ ,1    is calculated 

by using the ith state estimation equation (9) as: 
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which is essentially the Jacobian of the vector-valued function 
f with respect to the scalar parameter i

kk ,1ˆ  . However, it 

should be noted that we do not need to calculate the Jacobian 
matrix of the system with respect to its states, which is an 
advantage from implementation point of view. 

Finally, the well-known standard back-propagation (BP) 
algorithm is used to calculate the partial derivatives 

i
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kk net  ,1̂ and i
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kk net  ,1̂ for Li ,...,1 . Due to the 

linearity of the output layer of the NPEs, we simply have

1
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net

 , and taking into account the sigmoidal activation 

functions of the hidden layer of the NPEs, we have  
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where      i

k
i

kjk
i

k SjyVyV
j

,...,1,diag 2   ; and iS  is the 

number of neurons in the hidden-layer of the ith NPE and i

jkV is, 

once again, the jth row of i
kV . 

B. FDI Decision Logic of the Series-Parallel Scheme and 
the Threshold Selection Criteria 

To formulate the FDI decision logic, we need to define a set 
of residual vectors as follows (note that a total of L residual 
vectors can be defined one per state estimator in the bank): 
 

ˆ ; 1,...,i i
k k kr y y i L                      (16) 

 
Given Assumption (ii), the FDI decision logic for the series-
parallel scheme is quite straight-forward and can be stated as: 
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where ,i j

kr  is the absolute value of the jth element of the 

residual vector corresponding to the ith NPE in the bank; 
; 1,...,j j n   denotes the thresholds associated with the output 

residuals of the NPEs; Lii ,...,1;   denotes the thresholds 

corresponding to the FP estimate of the ith NPE in the bank; 
F
kC  specifies (the index of) the faulty component(s) within the 

system at each instant of time (i.e., the health state of the 
system); i

H  is the value of the ith FP under nominal, healthy 
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conditions (which is “zero” for additive FPs and “1” for 
multiplicative FPs); and finally, C

FT  represents the detection 

and isolation time (or time-step) of the fault(s). Under healthy 
conditions, F

kC  should ideally (i.e., under perfect detection) be 

an empty set (i.e., F
kC  = ). On the other hand, in presence of 

only one faulty component in the system, F
kC should ideally 

(i.e., under perfect isolation) belong to the set  1,..., L . 

However, in case of imperfect isolation, F
kC could be a subset 

of the set  1,..., L , consisting of more than one elements.  

It should be noted that as opposed to the thresholds

Lii ,...,1;  , the thresholds ; 1,...,j j n   are common (or 

equal) across all NPEs in the bank of filters. As can also be 
seen from the FDI decision logic in (17), both the residual 
signals and the FP estimates Lii

k ,...,1;ˆ   are examined in the 

series-parallel scheme to detect the presence and isolate the 
location of faults in the monitored system. Once a fault is 
detected and the faulty component is isolated, the severity of 
the fault is essentially the value of the corresponding FP 
estimate, namely

1,ˆ
F
kC

k k 
.  

In the series-parallel scheme fault detection can be ensured 
if the well-known worst-case noise/disturbance analysis is 
employed for assigning the thresholds ; 1,...,j j n   in (17). 

However, this does not guarantee that fault isolation will be 
perfectly achieved. More precisely, the ith FP estimate i

kk ,1ˆ   is 

not perfectly decoupled from all fault sources but the ith one 
(i.e., the fault sources Liij ,...,1,1,...,1  ). In fact, there is 

always a weak impact from the fault sources 
Liij ,...,1,1,...,1   on the ith FP estimate i

kk ,1ˆ  , as will be 

demonstrated using simulations in Section VIII. However, this 
weak impact can be resolved by properly setting the thresholds

Lii ,...,1;  . A good rule of thumb that augments the 

reliability of FDII and ensures the safety of the system is to 
select the thresholds Lii ,...,1;   in a way that the occurrence 

of the ith fault with a severity level below its respective 
threshold i  does not significantly deteriorate the system 
performance. 

IV. ROBUST FDII USING PARALLEL ARCHITECTURE OF NPES 

The series-parallel scheme developed in the previous 
section possesses several advantages including simple FDI 
decision logic (as discussed earlier) and fast convergence 
(which will be demonstrated in Section VIII). However, it may 
incorrectly isolate faults specially when there is a strong 
coupling between two fault sources. Furthermore, as 
illustrated in the simulation results of Section VIII, the series-
parallel scheme suffers from lack of robustness to 
measurement noise. In particular, measurement noise 
significantly deteriorates the fault isolation and identification 
performance of the series-parallel scheme. This is due to the 
fact that measurement noise directly propagates through the 
network, thus affecting the FP estimates.  

),( 11
kk VW 1

1z

 
1

,1ˆ kk

1
kr

),( L
k

L
k VW L

1z

ˆL
ky  

L
kk ,1ˆ 

L
kr

L
kk ,1ˆ 

1ku ky

1
,1ˆ kk




1ˆky

 

Fig. 2 Parallel scheme of the proposed hybrid FDII approach 
 

The sensitivity of the series-parallel scheme to 
measurement noise makes it impractical and unreliable for 
fault diagnosis in low SNR applications. The parallel scheme 
developed in this section intelligently resolves this issue by 
feeding back the estimated rather than the measured outputs to 
the NPE input. This slight restructuring of the series-parallel 
scheme makes the measurement noises to be filtered out in the 
NPE weight adaptation process of the parallel FDII scheme, 
hence making it extremely robust to measurement noise. The 
strong insensitivity of the FDII performance of the parallel 
scheme to measurement noise will be demonstrated in Section 
VIII. The schematic of the robust parallel structure of the 
proposed hybrid FDII methodology is shown in Fig. 2. 

Furthermore, by using a special formulation of the FDI 
decision logic, the parallel scheme allows fault isolation to be 
perfectly achieved in contrast to the series-parallel scheme. 
The reason for perfect isolation in the parallel scheme is that 
the only signal common among the inputs of all state 
estimators (or predictors) and the NPEs in the bank is the 
control input signal. More specifically, each NPE and state 
estimator in the bank utilizes its own state estimate (or 
prediction), which automatically enforces a structural 
decoupling between the units. Clearly, this restructuring also 
has a disadvantage of slower convergence rate for the state 
estimators and the NPEs of the parallel scheme as compared to 
the series-parallel approach. This slower convergence rate 
causes longer fault diagnosis delays and makes the parallel 
scheme sensitive to transients of the closed-loop system (due 
to changes in the control command). More specifically, while 
the state estimates from the series-parallel scheme very 
quickly converge to the measured states (thus extremely 
robust to closed-loop system transients), the parallel scheme 
generates false alarms during the transients until the steady 
state of the closed-loop system is reached. 

The NPE weight adaptation laws of the parallel structure 
remain essentially similar to those of the series-parallel 
scheme with only slight modifications; however, the FDI 
decision logics of the two are a bit different as described 
below. 
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Since instead of the actual measurements, the output 
estimates (or predictions) are fed back to the NPEs’ and state 
estimators, 

1ky  in (6) should be replaced by i
ky 1ˆ 

, and 
1kx  

(equal to 
1ky  under full-state measurement assumption) in (9) 

must be replaced by 
1ˆi

kx   for Li ,...,1 . Hence, for the robust 

parallel FDII scheme we have:   
 

   1,ˆ , , ; 1,...,i i i i
k k k k kg y W V i L                             (18) 

1 1ˆ ; 1,...,i i
k k ky x u i L



                            (19) 

 
Moreover,   
  

  1 1 1,
ˆˆ ˆ , ,

; 1,...,
ˆ ˆ

i i i
k k k k k

i i
k k

x f x u
i L

y x

  
  



                              (20) 

A. Weight Update Laws of the Robust Parallel Scheme 

Once the above adjustments are made to (6) and (9), the 
weight update laws remain practically intact, since they are 
written in terms of ky  in (6), which represents the input 

vector of the NPEs. The only required adjustment to the 
weight update laws of the series-parallel scheme that may 
need to be explicitly re-emphasized is in (15). For the robust 
parallel structure, this equation should be reinstated for 

Li ,...,1  as: 
 

 1 1 1,

1, 1,

ˆˆ , ,ˆ

ˆ ˆ

i ii
k k k kk

i i
k k k k

f x ux 

 
  

 




 
                            (21)  

B. Fault Isolation Policy of the Parallel Scheme 

Once again, we need to define a set of L residual vectors – 
one per state estimator in the bank – as:  

 
 ˆ ; 1,...,i i

k k kr y y i L                                     (22) 

 
In the sequel, the FDI decision strategy is defined as: 
  

    , ,, , ; 1,..., ; ; 1,...,F C i j j l j j
k F k kC T i k r r l L l i j n          (23) 

 
where ji

kr
,  denotes the jth element of residual vector i

kr  and 

; 1,...,j j n   are the thresholds corresponding to the state 

residuals of the NPEs. It should be noted that the thresholds 
; 1,...,j j n   are common (or equal) across all NPEs in the 

bank. The above fault isolation policy states that the fault 
model with residuals within the threshold bounds is actually 
the current active mode of the system. In the parallel scheme, 
threshold values are determined by using the worst-case 
disturbance/noise analysis. Once the fault source is isolated, 
the severity of the fault is essentially the value of the 
corresponding FP estimate. It should be noted that the FDI 
decision logic of the robust parallel scheme is simpler to 
design than that of the series-parallel scheme. This can be 
simply observed by comparing (23) with (17). Therefore, the 

FDI logic of the parallel scheme has only n parameters to be 
specified corresponding to the residual thresholds ; 1,...,j j n 
, with n being the order of the monitored system. On the other 
hand, in the series-parallel scheme n+L parameters need to be 
specified, where the thresholds associated with FPs 

; 1,...,i i L   have to be determined as well.  

Remark: The reason for having different FDI decision logics 
is indeed due to the difference between the architecture of the 
series-parallel and the parallel schemes. As opposed to the 
series-parallel scheme, the only common input signal of the 
state estimators and the NPEs of the parallel FDII strategy is 
the control input (represented by ku ). More specifically, each 

NPE and state estimator in the bank of parallel scheme utilizes 
its own state estimate as opposed to the series-parallel scheme 
that uses a common output measurement vector (in addition to 
the common control input). This automatically enforces a 
structural decoupling between the units in the bank of the 
parallel scheme. Hence, the fault isolation logic of the parallel 
scheme states that the fault model with residuals within the 
threshold bounds is actually the current active mode of the 
system. However, in case of the series-parallel scheme this is 
not necessarily the case because the output measurements of 
the faulty system that is fed back to the state estimators of the 
series-parallel scheme can maintain more than one residual 
within the threshold bounds with slight changes in parameter 
values. Hence, there is a need to check the estimated 
parameter values in order to distinguish the actual faulty mode 
of the system. 

V. PROPOSED FDII UNDER PARTIAL STATE  MEASUREMENTS 

Fig. 3 depicts a block diagram representing the extension of 
the series-parallel FDII scheme to partial-state measurement 
conditions. As shown in Fig. 3 this extension is based upon 
integration of the hybrid NPEs of the series-parallel FDII 
scheme with a fault tolerant observer. 

The states are decomposed into measured and unmeasured 
as:  

 m unm unmx x x y x                                  (24) 

 

where mx denotes the subset of system states directly measured 

by sensors (i.e., system outputs) and unmx represents the subset 
of unmeasured states of the system.  

As can be seen from Fig. 3, the measured states m
k kx y are 

fed directly to the series-parallel FDII scheme, while the 
unmeasured states are first estimated by the FTO using system 
inputs and output measurements and then these estimates ˆ

unm

kx

are fed as inputs to the bank of NPEs of the FDII module. 
Accordingly, the NPE update laws and the FDI decision logic 
of the series-parallel FDII scheme have to be slightly modified 
as follows: 
(i) In (6), 

1ky 
 is replaced by

1 1ˆm unm
k kx x    ; that is, 

 

1 1 1ˆm unm
k k k ky x x u



  
     

                       (25) 
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(ii) In (9), 
1kx  is replaced by

1 1ˆm unm
k kx x   

; that is, 

 

 1 1 1 1,ˆˆ ˆ , ,
; 1,...,

ˆ ˆ

i m unm i
k k k k k k

i i
k k

x f x x u
i L

y x

   
     
 

                 (26) 

 
(iii) The instantaneous output estimation error of the NPEs in 

(10) is redefined as: 
 

 
1 1ˆ ˆ ; 1,...,i m unm i

k k k ky x x y i L                            (27) 

 
(iv) The residuals corresponding to the L NPEs in the bank 

given by (10) is redefined as:    
 

 
1 1ˆ ˆ ; 1,...,i m unm i

k k k kr x x y i L                (28) 

 
The rest of the equations for the weight update laws and the 

FDI decision logic essentially remain the same as those given 
for the series-parallel FDII scheme.  

The FDII using the parallel scheme is accomplished under 
partial-state measurement using exactly the same principle as 
the one described for the series-parallel scheme. More 
specifically, an FTO is integrated with the parallel NPEs as 
depicted in Fig. 4.  

 

1ku  ky

1z

1z

L
kr

L
k

1
k1

kr

1ˆunm
kx 

1
m
kx 

 

Fig. 3 The series-parallel FDII scheme under partial-state 
measurements using the integration of the hybrid NPEs and an FTO 

 
It is important to note that Fig. 4 looks exactly the same as 

Fig. 3 except for the internal structure of the two FDII 
schemes. More specifically, the difference between the two 
figures is internal to the FDII blocks and is in the way the 
vector 

1 1ˆm unm
k kx x   

 is being used. Equations (25)-(28) 

essentially describe how the vector 
1 1ˆm unm

k kx x     affects the 

equations governing the series-parallel scheme. For the robust 
parallel scheme, however, the changes (i) and (ii) above are 
not required and (18)-(20) still remain valid. Indeed, for the 
robust parallel scheme only the instantaneous output 

estimation error and the residual vector have to be redefined as 
in (27) and (28), respectively.  
 

1ku  ky

1z

1z

L
kr

L
k

1
k1kr

1ˆunm
kx 

1
m
kx 

 

Fig. 4 The robust parallel FDII scheme under partial-state 
measurements using the integration of the hybrid NPEs and an FTO 

 
The FDII schemes under partial state measurements 

(depicted in Figs. 3 and 4) consist of two main modules, 
namely the hybrid NPEs and an FTO. The design and 
development of hybrid NPEs was the subject of Sections III 
and IV and both series-parallel and parallel NPE schemes 
were thoroughly treated. Hence, the focus of the next section 
is on the design and development of an FTO, which enables 
FDII under partial state measurements. 

VI. KALMAN FILTER STRUCTURE PRESERVING NEURAL STATE 

ESTIMATOR (NSE) 

To solve the filtering problem for nonlinear dynamical 
systems, [24] used the so-called concept of “linear-structure 
preserving principle” (LISP), which is designed to imitate the 
structure of an optimal linear recursive least squares (RLS) 
[22] or similarly the standard Kalman filter [23]. In other 
words, the linear state prediction is replaced by a nonlinear 
one, using the exact nonlinear dynamics of the system. 
Furthermore, the filter gain matrix is replaced by a 
parameterized nonlinear function that is a function of the 
prediction error. For the parameterized nonlinear function, we 
use a multi-layer perceptron (MLP) neural network with 
neural weights as the parameters that are continuously 
adapted; hence the name Kalman filter structure-preserving 
neural state estimator (NSE). To summarize, the recursive 
state equations of the NSE are as follows:    

 

  
 

1 1ˆ ˆPrediction Step: ,

ˆ ˆCorrection Step: , ,

k k k

obs obs
k k k k k

x f x u

x x g e W V


 

 

 


 

           (29) 

 
with the output equation defined as: 
 

 
kk xHy ˆˆ                                (30) 
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where   kkkkk xHyyye ˆˆ  is the prediction error, 

 , ,obs obs
k k kg e W V  is a multilayer feed-forward neural network 

with prediction error 
ke  as the input and with sigmoidal 

activation functions for the hidden-layer neurons and linear 
neurons in the output layer. The parameters obs

kW and obs
kV denote 

the weights of the output layer and the hidden layer of the 
network, respectively.   
 

1Z

ˆky 1kuˆkx

ke ˆkx 1ˆkx 

ˆky

obs
ke





 

Fig. 5 The Kalman filter structure preserving neural state estimator 
(NSE) redrawn with modifications from [24] 

 
The recursive equation of the NSE, given by (29), can also 

be written as:   
  

   1 1ˆ ˆ , , ,obs obs
k k k k k kx f x u g e W V

                      (31) 

 
The block diagram representation of the Kalman filter 

structure preserving NSE is shown in Fig. 5. The only 
assumption made in this scheme is that the process and 
measurement noise are zero mean, mutually independent and 
identically distributed (i.i.d.). Parisini and Zoppoli [24] 
applied this neural filter to a subclass of target motion analysis 
problems. Simulation results presented therein revealed that 
this neural filter outperforms the EKF algorithm especially in 
presence of model uncertainties or model parameter 
variations. The results showed significant performance gains 
over the EKF filter, especially in situations where the EKF 
diverges due to numerical instability of the covariance matrix. 
The other advantage of this recursive scheme is that it does not 
have the computational complexity issues of the Lo’s 
approach [25] when the observation period is too large or has 
essentially no a priori bound as in on-line health monitoring 
and fault diagnosis applications. It is important to note that the 
structure/architecture of the developed NSE is not a novelty of 
this work and has been taken from [24]. However, the 
development of new weight update laws for the NSE 
comprises another contribution of this work, which is the 
subject of the next section. 

A. Update Laws for the NSE: Recursive On-line 
Backpropagation 

Parisini and Zoppoli [24] update the neural filter weights by 
using the standard back-propagation algorithm. Their neural 
weight adaptation was performed at the time-step k+1 through 

a nonlinear optimization on the set of weights 
1 1,obs obs

k kW V 
, 

while freezing the set of k previously computed weights

1{ , }obs obs k
i i iW V 

. However, this procedure may result in 

suboptimal performance or even filter divergence due to the 
presence of feedback in the NSE architecture (as seen from 
Fig. 5, where the neural network output is fed back to its input 
after passing through the system dynamics).  

In order to adapt the parameters of the closed-loop system, 
a partial derivative of the associated dynamical system must 
be calculated. Due to the presence of feedback, the calculation 
of this derivative can be quite complex. However, [26] 
correctly argues that the ordered partial derivative, which is a 
partial derivative whose constant and varying terms are 
defined by using ordered set of equations, provides a 
mathematical tool for computing derivatives of dynamical 
systems.  

As shown by [26], two classes of steepest descent 
adaptation (or training) algorithms based on ordered partial 
derivatives can be derived for a general closed-loop nonlinear 
system. These include: (i) epochwise training algorithms and 
(ii) on-line training algorithms. An epochwise training 
algorithm is any algorithm in which the adaptation takes place 
after each epoch or after a number of epochs, where an epoch 
is an iteration to iteration cycling of a discrete-time system 
from initial to final iteration (i.e., 

fk k ).  

Due to the real-time limitations of the epochwise training 
algorithms, we adopt on-line training algorithms. The error is 
defined at each iteration as the instantaneous difference 
between the desired response and the output of the system: 

 

    1

2k k k k ke d y d y
                     (32) 

 
where k is the current time step (or iteration). However, 
calculation of the exact ordered partial derivative of the error 
with respect to the weight vector (i.e., error gradient) is not 
possible. Instead, an approximation of the error gradient must 
be used to update the weights. Therefore, the on-line update 
rule at step k is expressed as: 
 

 
1

k
k k

k

E
W W

W







 



                 (33) 

 

where 
k kE W   is the approximate error gradient which is 

calculated as [26]:  
 

 
 


k k

k k
k k

E y
d y

W W

 
 

  
 

                   (34) 

 
where the approximate output derivative 

k ky W   is 

recursively obtained from (with 0 1  ): 
 

  

1

M
mk k k k m

mk k k m k m

y y y y

W W y W


 


  

   
 

                    (35) 
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To obtain the weight update laws of the Kalman filter 
structure preserving NSE, let us define the observer error as: 

 

kk
obs
k yye ˆ                    (36) 

 
where 

ky denotes the outputs (i.e., the measured states) of the 

system and ˆky is the output estimates from the FTO (i.e., the 

NSE). By using the observer error in (36) and (30), the cost 
function of the NSE is defined as: 
 

   222
ˆ

2

1
ˆ

2

1

2

1
kkkk

obs
k

obs
k xhyyyeJ              (37) 

 
By utilizing the on-line scheme given in (32), the weights of 

the NSE must are updated as:   
 















 obs
k

obs
kobs

w
obs

k
obs

k W

J
WW 1

                            (38) 















 obs
k

obs
kobs

v
obs

k
obs

k V

J
VV 1

                  (39) 

 
where obs

kW  and obs
kV  are the output layer and hidden layer 

weights of the NSE, respectively, and obs
w  and obs

v  are the 

corresponding learning rates. 
Using (38)-(39), the approximate gradient of the cost 

function with respect to the output layer weights obs
kW  is given 

by:  
 

   





1

ˆ ˆ

ˆ

ˆ

ˆ

obs
kobsk k

kobs obs
k k k

obs k
k obs

k

jn
obs k
k j obs

j k

h xJ x
e

W x W

x
e H

W

x
e h

W

 







 
 

  


 




 



                (40) 

 
Similarly, the approximate gradient of the cost function with 
respect to the hidden layer weights obs

kV is as:  

 
   





1

ˆ ˆ

ˆ

ˆ

ˆ

obs
kobsk k

kobs obs
k k k

obs k
k obs

k

jn
obs k
k j obs

j k

h xJ x
e

V x V

x
e H

V

x
e h

V

 







 
 

  


 




 



            (41) 

 
Now, by invoking the on-line recursive algorithm in (35) 

we have: 
 

 

 

1

1 1

1

1 1

ˆ ˆ ˆ ˆ

ˆ
; 1,...,

ˆ ˆ ˆ ˆ

ˆ

j j j
k k k k

obs obs obs
k k k k

j j j
k k k k

obs obs obs
k k k k

x x x x

W W x W
j n

x x x x

V V x V





 


 

 


 

    
  
    

    
     

       (42) 

 

where ˆ n
kx   is the estimate of the system state vector at time 

step k and ˆ j
kx  is the estimate of the jth state of the system. It is 

important to note that the parameter M in (35) is equal to 1, as 
can be seen from (42) of the Kalman filter structure preserving 
NSE. This is due to the fact that in the NSE architecture only 
the last state estimate generated at the output of the NSE, 
namely

1ˆkx 
, is fed back to the NSE input, as can also be seen 

from Fig. 5. Furthermore, it is important to note that (42) is a 
recursive equation that requires calculating the following 
terms in each iteration:  
 

 

 

, ,ˆ

; 1,...,
, ,ˆ

obs obsj
j k k kk

obs obs
k k

obs obsj
j k k kk

obs obs
k k

g e W Vx

W W
j n

g e W Vx

V V





  
 


 

  

              (43) 

 
The above terms can be easily calculated using the standard 

back-propagation (BP) algorithm as: 
 

        

     

, ,

; 1,...,
, ,

.

obs obs
j k k k obs

k kobs
k

obs obs
j k k k obs obs

k k k kobs j
k

g e W V
V e

W
j n

g e W V
W I V e e

V






 
 


 





  

    (44) 

 

Furthermore, the term 
1ˆ ˆj

k kx x   in (42) is defined as: 

 

1
1 1 1 1

ˆ ˆ ˆ ˆ
,..., ,..., ; 1,...,

ˆ ˆ ˆ ˆ

j j j j
k k k k

i n
k k k k

x x x x
j n

x x x x   

    
     

           (45) 

 
where 

1ˆ ˆ ; 1,..., ; 1,...,j i
k kx x j n i n     is the (j,i)th  element of 

the above matrix. Consider the Jacobian matrix of the 
nonlinear system defined as:  
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ˆ ˆ
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. . .
ˆ

. . .

ˆ ˆ, ,
. . .

ˆ ˆ

k k k k

n
k k

k k
k

k

n k k n k k
n

k k

f x u f x u

x x

f x u
F

x

f x u f x u

x x

 




 

  
   
 

  
     

 
  
   

              (46) 

 
with the (j,i)th element defined as follows: 
 

        
1

1

ˆ ,
; 1,..., ; 1,...,

ˆ
j k kji

k i
k

f x u
F j n i n

x



  


                      (47) 

 
The (j,i)th element of the matrix in (45) – and 

correspondingly in (42) – can be calculated as follows (in 
conjunction with (31)): 

 

  1
1 1

ˆ

ˆ ˆ

j
ji obs obsk k

k k k ki ij
k k

x e
F W I V e

x x





 

 
  

 
               (48) 
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where the term   obs obs
k k kj

W I V e   is the partial derivative of the 

neural network output with respect to its input, which is 
obtained using the standard BP algorithm.   

Finally, the partial derivative 
1ˆ i

k ke x
   can simply be 

calculated as:  
  

     
1 1 1

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

k k kk k
i i i
k k k k

y h x h xe x

x x x x

  


  

   
   

  
                (49) 

 
where  ˆ ˆk kh x x H   , when the system output equation (30) is 

linear. 

VII. CONCLUSION 

In this paper a novel integrated hybrid solution to the 
problem of fault diagnosis of components of nonlinear 
systems has been presented. This work can be considered as 
an extension of our earlier work in [27]-[30]. Unlike most 
existing fault diagnosis techniques, the proposed solution is 
able to simultaneously detect, isolate, and identify the severity 
of faults in system components within a single unified 
diagnostic module.  

The core of the proposed hybrid nonlinear fault detection, 
isolation, and identification (FDII) scheme is a bank of 
adaptive neural parameter estimators (NPE), where each NPE 
in the bank was designed based on a separate single-parameter 
fault model. At each instant of time, the NPEs provide 
estimates of the unknown fault parameters (FP), which in 
conjunction with the output residuals determine the health 
state of the system being monitored.  

Two NPE structures, namely series-parallel and parallel, 
have been proposed and their respective FDI decision logics 
and weight update laws are presented. The notion of a fault 
tolerant observer (FTO) was introduced, which enables the 
estimation of unmeasured states of the system even in 
presence of faults in the system. A Kalman structure 
preserving neural state estimator (NSE) was designed and 
developed that adaptively estimates system states by 
constantly minimizing a performance index comprising of the 
instantaneous observation error. The adaptive capability of 
neural networks has been exploited in the proposed NSE in 
order to achieve robustness with respect to faults. Due to 
presence of output feedback in the architecture of the NSE and 
the on-line nature of the proposed FTO, new update laws are 
derived using the on-line recursive back-propagation 
algorithm.  

Applications of the proposed solutions are currently under 
investigation to fault diagnosis of unmanned underwater 
vehicle (UUV) systems. 
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