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Abstract—Modern Portfolio Theory (MPT) according to
Markowitz states that investors form mean-variance -efficient
portfolios which maximizes their utility. Markowitz proposed the
standard deviation as a simple measure for portfolio risk and the
lower semi-variance as the only risk measure of interest to rational
investors. This paper uses a third volatility estimator based on
intraday data and compares three efficient frontiers on the Croatian
Stock Market. The results show that range-based volatility estimator
outperforms both mean-variance and lower semi-variance model.
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|. INTRODUCTION

ODERN Portfolio Theory was introduced by Nobel

Laureate Harry Markowitz [15] in his seminal paper
which changed the way portfolios were managed until then.
This theory focuses on portfolio diversification and risk
control. Investors form portfolios according to the mean
variance efficiency criteria. This means that investors
maximize their return across all possible portfolios and accept
the risk according to their risk aversion. Markowitz describes
a risk averse investor as a subject who prefers a higher return
versus a lower return and who at the same time is prepared to
accept more risk if such investment increases the expected
return. Such an investor optimizes the expected portfolio
return given the portfolio risk. Modern portfolio theory is
based on the efficient frontier (EF) of investments, i.e. the
spine of portfolios with maximum expected return across all
possible portfolios given a certain amount of portfolio risk.
The portfolio risk is of crucial information to the investor and
therefore needs to be quantified. The volatility of the portfolio
return is often considered as the risk of concern. Since
volatility is not observable it needs to be estimated. Markowitz
proposed to quantify portfolio risk by means of the volatility
of financial assets. He used the standard deviation of financial
assets as a simple measure of risk and the lower semi-variance
as the more complex estimator. The lower semi-variance is
according to Markowitz the only volatility estimator in which
a rational investor might be interested in. On the other side the
standard deviation has become one of the most popular risk
estimators in practice due to the simplicity in using and
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understanding this measure in portfolio management.
However, both estimators use only one single daily observable
price change to determine the volatility of financial returns.
An alternative volatility estimator used in this paper is based
on high frequency data. Volatility estimated by means of high
frequency data is also called realized volatility and can be
considered unbiased. In practice, however, the implementation
of high frequency data is limited by several reasons. First,
high frequency data is not available for all securities. This is
especially true for securities traded in emerging markets where
the trading volume is often insufficient as the data frequency
becomes smaller. Secondly, as the frequency becomes smaller
microstructure effects emerge which induce an upward bias in
the estimated volatility. Thirdly, there is a serious calculation
complexity due to the extensive amount of data that is
required for estimating the daily volatility or the variance-
covariance matrix. For example to calculate the volatility of
250 trading days based on 5-minute interval observations
around 24.000 intraday price observations are required.
Moreover, for estimating the EF of a portfolio consisting of 20
assets more than a million observations will be required. A
more practical methodology to estimate the intraday volatility
is by means of open, high, low and closing prices (OHLC).
This paper uses the Parkinson [17] range-based volatility
estimator for extreme price jumps, which are characteristic for
emerging markets like Croatia. According to empirical
research performed by [4] the range-based volatility estimator
is the least biased volatility estimator using OHLC data when
measuring the volatility of the Croatian stock market. A
significant shortcoming however, of the range-based volatility
estimator is that no multivariate analogue of the intraday range
exists, which means that the estimation of the variance-
covariance matrix is not straightforward. A simple estimator
of the conditional variance-covariance matrix of returns was
proposed by [12]. This methodology is used to construct the
EF based on the range-based volatility estimator. This paper
compares EF based on 3 different volatility estimators using a
portfolio of stocks from the Croatian Stock Market.

The outline of the remainder of the paper is as follows.
Section Il reviews the literature on modern portfolio theory
with focus on the literature on different approaches to
estimating the volatility. Section Il describes the modern
portfolio theory, which is the basis of this research. Section IV
presents the lower semi-variance approach in estimating the
efficient frontier and Section V the intraday volatility
approach. The stock price data is described in Section VI. The
results of the empirical research are presented in Section VII.
Section VIII concludes.
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Il. REVIEW OF PREVIOUS RESEARCH

In his seminal paper, [15] describes Modern Portfolio
Theory in a quantitative model that solves the complex
problem of capital allocation across assets in such a way that it
minimizes the variance of the portfolio given an expected
return. Markowitz proposed a simple square root optimisation
that results in the mean-variance efficient portfolio and
suggested to use the standard deviation for estimating the
portfolio volatility. The standard deviation is a statistically
correct estimator of the volatility of returns if the observed
time series are derived from a normal distribution. This,
however, is not always the case. One of the stylized facts of
financial returns as described in [7] is the non-normality of
financial returns. The distribution often ‘suffers’ from positive
skewness and leptokurtosis. Other stylized facts include
amongst others heteroscedasticity and time varying
correlations of financial returns. Therefore the standard
deviation, which assumes normality by default, is expected to
underestimate the true volatility of the distribution. Motivated
by the definition of risk, as a financial loss or downside risk,
[16] proposes a new definition of risk considering only the
negative results.

The lower semi-variance measures the dispersion of the
returns below a given target return. Markowitz explains that
the usage of the lower semi-variance is justified by two
reasons. Firstly, rational investors are only interested in
limiting the volatility that can cause a negative result.
Secondly, if the financial time series are not normally
distributed then the standard deviation will underestimate the
true risk of the portfolio. In these cases the lower semi-
variance, as a measure of downside risk, should be used
instead. It is shown in [14] that there is a great support in the
market for using the lower semi-variance as a risk measure.
Investors are more sensitive to losses below a certain threshold
then to gains beyond a certain threshold. In [5] the formula for
lower semi-variance is generalized and defined as the lower
partial moment (LPM). Four different LPM volatility
estimators are compared in [13] and it is shown that the LPM
proposed by Markowitz is suitable for controlling risk when
the distribution of the assets is not normal.

Both estimators that were proposed by Markowitz use only
one single daily price observation to determine the variance-
covariance matrix. This means that all other price observations
that are available when high frequency data a used are
ignored.

One of the recent theories focusing on volatility estimators
are described in the literature of high frequency data. The
realized volatility estimator is proposed in [8], which is the
squared sum of intraday returns. According to [3] this
volatility estimator is theoretically unbiased when the
frequency sample goes to zero, but will in turn induce
microstructure effects. The realized volatility is estimated by
using all market available intraday information. Another
practical disadvantage of this method is that it requires an
extensive amount of intraday price observations for estimating
an EF. A reasonable alternative to using high frequency data is
to use volatility estimators that require only 4 standard

available intraday price observations, i.e. the OHLC
estimators. OHLC estimators, generally, assume that asset
prices follow a Geometric Brownian Motion (GBM) i.e. the
price of the asset on day t is independent of the price of the
same asset on day t-1 and that the price of the assets are
stochastic through time. GBM without drift is assumed in [17]
and it proposes a range based volatility estimator. This
estimator uses the maximum difference between the maximum
and the minimum intraday price for estimating the volatility.
The open and closing prices are included in [11] and they
propose an estimator, which uses all four OHLC intraday price
observations. An estimator that follows a GBM with drift is
proposed in [18]. This estimator is useful when the drift is
non-zero. Significant differences between OHLC estimators
that are popular in the literature are found in [9] and they
conclude that the choice of the OHLC volatility estimator is
important. OHLC volatility estimators that are popular in the
literature are compared in [4], against the unbiased high
frequency based volatility estimator. They show that the
Parkinson range-based volatility estimator is the least biased
estimator for estimating the volatility of the Croatian Stock
market compared to other OHLC volatility estimators. The
comparison is performed against the high frequency based
realized volatility which is the theoretically unbiased volatility
estimator. The data used in their research spans a period of 5
years and includes the recent credit and bank crisis of 2007
and 2008. They confirm the findings of [9] by means of loss
functions and time varying conditional correlations and
conclude that the OHLC volatility estimators are significantly
different from each other. This paper follows the results of [4]
and uses the Parkinson range-based volatility estimator in
estimating the intraday volatility. The conditional variance-
covariance matrix proposed in [12] is used to construct the EF
by means of mean-variance.

EF are compared in [10], [19] and [20] based on the
standard deviation and the lower semi-variance and conclude
that it is possible to construct an EF based on the lower semi-
variance that lies on the left side of the EF based on the simple
standard deviation. They conclude that this EF is
stochastically dominant compared to the standard deviation
proposed by Markowitz. It is possible to reduce the risk of a
portfolio by using the lower semi-variance as a measure of the
portfolio volatility [10]. According to [6], it is not possible to
compare EF based on different volatility estimators since the
risk estimators are not identical, i.e. the x-axis on the mean-
variance coordinate system is different. They conclude that the
only meaningful way of comparing EF is by ex-post analysis
and that the location of the EF on the mean-variance
coordinate system does not add valuable information.

This research compares EF based on different volatility
estimators: standard deviation, lower semi-variance and the
intraday volatility estimator. The questions of interest are
whether the volatility estimator influences the location of the
efficient frontier on the mean-variance coordinate system and
whether the location of the efficient frontier on the mean-
variance coordinate system determines the performance of the
efficient portfolios by the ex-post analysis.
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11l. MARKOWITZ MODERN PORTFOLIO THEORY

According to Modern Portfolio Theory (MPT) investors use
mean-variance optimization to construct an efficient portfolio.
MPT relies on the following assumptions: the investment
horizon is one period (one month, one year, etc.); investors
optimize their expected return across all possible portfolios;
the expected portfolio return depends on the expected return
and the risk of the investment; investors are rational and prefer
a higher return compared to a lower return, and also have
aversion to risk; there is no tax, no inflation and there is no
transaction or other costs involved; all investors have free and
unlimited access to relevant information at the same time; all
stocks are infinitely divisible. This set of assumptions creates
a theoretical world in which investors operate according to
MPT. This world is different from the real world, but
incorporates almost all elements average investors take into
account when making investment decisions.

According to MPT investors will spread their portfolio to
divers or control the risk and at the same time they want to
maximize their expected return. Optimization is based on
mean-variance efficiency, which means that, given a
predetermined portfolio risk, investors will choose the
portfolio that maximizes their return.

The standard deviation is a popular volatility estimator that
requires only one price observation per day. This estimator is
symmetrical and assumes that the returns follow a normal or
multivariate normal distribution.

Considering that every efficient portfolio has the highest
revenue along with defined rate of risk ¢, mathematically we
may define efficient portfolio as follows [1]:

max E(R,) 1)

Subject to:
o,<C (2)
3 T =1, ZO,ie{l,Z,...,n} (3)

i=1

The expected portfolio return is defined as

E(R”)zzn:”iE(Ri)=ﬂ'"E(R)=E(R)'.ﬂ- (4)

i=1

and the portfolio risk as

o, =N7"S-7 = /iiﬂ,ﬂjq] . ()

E(R) denotes the vector column of expected returns, E(R) the

expected return of the stock i, 7 the vector column of weights
of a stock in a portfolio, -, the weight of a stock i in portfolio

7, S the variance-covariance matrix, o; the covariance of
returns of stocks i and j, and n the number of stocks.

IV. LOWER SEMI-VARIANCE APPROACH

When the returns do not follow a normal distribution, the
standard deviation often underestimates the true volatility [7].
The lower semi-variance measures the variance below a
certain threshold. Only returns that are underperforming this
threshold are taken into account in determining the portfolio
risk. Portfolios optimized with this volatility estimator are
expected to assign less weight to stocks that are
underperforming and more weight to stocks whose returns
exceed the threshold.

When the risk is measured by lower semi-variance, the
portfolio optimization problem becomes the problem of
quadratic programming of the following form given in [2]:

min (i ptzfj (6)
t=1
with constraints:

2,20, te{l,2,.,T} @)

r,. is the return of the share j in period t, T is the number of
trading days. p,, t€{1,2,..,T}, is probability that the vector of

R=(R.R,...R,)
1.

returns of portfolio =, takes value

L= (G bl - Usually, o = Model’s variables are

?
n;, jeit2..,njand z, te{l,2,...T}.

V.INTRADAY VOLATILITY APPROACH

The standard deviation and the lower semi-variance use one
single daily price observation in determining the volatility of
the portfolio. All other relevant information available to the
investor is ignored. Intraday volatility estimators use more
daily price observations in computing the volatility. These
estimators do not rely on the normal distribution. It is shown
in [8] that the unbiased volatility estimator could be
constructed by means of high frequency data. The trading
volume in emerging markets is often insufficient to ensure
high frequency data for all required stocks. Due to limitations,
we follow [4] which showed that the Parkinson range-based
volatility estimator is the least biased OHLC estimator when
estimating the volatility of the Croatian Stock Market. The
Parkinson range based volatility estimator uses two intraday
price observations to determine the spread: the highest and the
lowest intraday observations.

The range-based volatility estimator is given by:

2
o - L .n[i] ®)

4In2 L
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In (8) H denotes the highest and L denotes the lowest
observed intraday price. Using the highest and the lowest price
observations Parkinson proposes a volatility estimator for high
volatile markets. This estimator follows a GBM without drift
and uses only extreme price movements to calculate the
volatility.

The portfolio risk as defined in (5) requires the variance-
covariance matrix for input. The off-diagonal elements of the
variance-covariance matrix of the range-based volatility
estimator are not directly observable. A simple model, that is
based on the exponentially weighted moving average
(EWMA), developed to estimate the off-diagonal elements of
the variance-covariance matrix when using the range-based
volatility estimator, is proposed in [12]. This model combines
the range-based and the return-based approaches. The return-
based volatility estimator is given by:

of, — {pJ ©)
pi,(fl

where p, s the price of stock i on day t.

The estimator is based on the multivariate EWMA model of
the conditional variance-covariance matrix given by:

|Jt7ﬂ’01t1+(l ﬂ') I]tl’ J 1""'n' (10)

where A is the single decay factor, which is typically set to
0.94, estimated by JP Morgan as the average value of decay
factor that minimizes the mean square error of daily out-of-
sample conditional volatility forecasts for a wide range of
assets. Covariance is given by:

of =In(r)-n(r,) - (12)
The diagonal and off-diagonal elements of the range-based

estimator of the conditional variance-covariance matrix are
given by

g | A0t H(A=A)oilTii = i = 12
it - ~ Range ~ Range .
J ,0,1 "ng jRng |¢Jx||]— ,N
where
R
pf =i, j=1.n (13)
ol

Jit

Finally, the elements of the variance-covariance matrix of
the range-based volatility model are calculated by

o) =6 ET (14)
Now, when the range-based variance-covariance matrix is

known, we proceed with steps (1) to (5) to calculate the mean
variance portfolio.

VI. DATA AND DESCRIPTIVE STATISTICS

The portfolios constructed in this research consist of an
investment in 10 stocks from the CROBEX index. The data
spans from 12" March 2013 to 13" December 2013 and
counts 191 price observations. The following stocks are
included: AD Plastik d.d. (ADPL), Atlantska Plovidba d.d.
(ATPL), Belje d.d. (BLJE), Djuro Djakovic Holding d.d.
(DDJH), Dalekovod d.d. (DLKV), Valamar Adria Holding
d.d. (DOMF), Ericsson Nikola Tesla d.d. (ERNT), Hrvatski
Telekom d.d. (HT), Ingra d.d. (INGR) and Vupik d.d. (VPIK).

Table | shows the descriptive statistics including the sample
size, minimum, maximum, expected returns, the volatility at
the end of the period for each volatility estimator, skeweness,
kurtosis and the Jarque-Berra test for normality of returns. The
descriptive statistics shows that all assets show asymmetric
behaviour and leptokurtosis, i.e. deviation from the normal
distribution. The Jarque-Berra test shows that none of the
stocks follows a normal distribution.

Fig. 1 shows values of the three observed volatility
estimators for each stock. It can be concluded that, on average,
the highest volatility is estimated by standard deviation and
that the lowest volatility is estimated by the lower semi-
standard deviation. However, the range-based volatility
estimator yields mixed results, i.e. for certain stocks it
estimates volatility higher than the standard deviation does,
and sometimes it provides volatility of a stock lower than the
lower semi-standard deviation does.

Volatility estimators
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Fig. 1 Volatility estimators

VIl. EMPIRICAL RESULTS

In this paper the location of the EF on the mean-variance
coordinate system and the performance of three different
volatility estimators in the ex-post or out-of sample analysis
are compared.

In the first part of the analysis, the EF is computed at 20
different risk levels for the portfolios using mean-variance,
lower semi-variance and intraday range-based volatility
approach. The appropriate weights, returns and standard
deviations are presented in Tables I1-1V.
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TABLEI
DESCRIPTIVE STATISTICS

ADPL  ATPL BLJE DDJH  DLKV _DOMF  ERNT HT INGR  VPIK
N 190 190 190 190 190 190 190 190 190 190
Min -0,0284 -0,0648 -00520 -00573  -0,3075 -00341 -0,1278  -0,1133  -0,0750  -0,0735
Max 00412 00731 01010 00825 02597 00289 00422 00329 01443 00724

Expected return 0,00000 0,00133 -0,00203 -0,00145 -0,00233 -0,00031 -0,00025 -0,00111 -0,00154 -0,00152
Variance 0,00007 0,0077 000037 000053 000328 000013 000021 0,00014  0,00094  0,00040
Standard deviation 000864 002768 001920 002292 005729 001140 001452 001177 003071  0,02002
Lower semi-variance 0,00004 000033 000016 000022 000162 000007 000014 000010 000036  0,00019
Lower semi-standard deviation ~ 0,00604 0,01810 001251 001481  0,04025 000823 001183 000998 001909  0,01387
Range-based volatility 000477 002111 002043 002716 005491 000947 0,00675 000619 003015  0,01737
Skeweness 0,24 0,49 1,04 0,69 -0,18 -0,19 -3,44 -4,51 1,21 0,10
Kurtosis 3,66 016 5,04 1,37 7,20 0,39 31,17 4318 437 1,65
Jarque-Berra 518 7151 6693 3602 14047 5501 665913 1342271 6105 14,83
TABLE II
EFFICIENT PORTFOLIOS USING MEAN-VARIANCE MODEL
ADPL ATPL BLJE DDJH DLKV DOMF ERNT HT  INGR VPIK Stdev.(%) Return (%)
03453 00590 00347 00402 00020 0,1867 0,208 0,765 00000 00348 05680 -0,0392
05818 01680 0,0000 00000 00000 01363 0,139 0,0000 0,0000 00000  0,7000 0,0153
06344 02279 00000 00000 00000 00516 00862 00000 00000 00000  0,8000 0,0266
06615 02772 00000 00000 00000 00000 00613 00000 00000 00000  0,9000 0,0354
06547 10,3257 0,0000 00000 00000 00000 00196 00000 00000 00000  1,0000 0,0429
06277 03723 00000 00000 00000 00000 00000 00000 00000 00000  1,1000 0,0496
05819 04181 0,000 00000 00000 0,000 00000 00000 00000 00000  1,2000 0,0557
05389 04611 0,000 00000 00000 0,000 00000 00000 00000 00000  1,3000 0,0614
04979 05021 0,0000 00000 00000 0,000 00000 00000 00000 00000  1,4000 0,0669
04583 05417 0,0000 00000 00000 0,000 00000 00000 00000 00000  1,5000 0,0722
04196 05804 0,000 00000 00000 00000 00000 00000 00000 00000  1,6000 0,0774
03817 06183 0,000 00000 00000 0,000 00000 00000 00000 00000  1,7000 0,0824
0,3445 06555 0,0000 00000 00000 0,000 00000 00000 00000 00000  1,8000 0,0874
0,3077 06923 0,000 00000 00000 00000 00000 00000 00000 00000  1,9000 0,0923
02713 10,7287 10,0000 00000 00000 0,000 00000 00000 00000 00000 20000 0,0971
02353 10,7647 10,0000 00000 00000 0,000 00000 00000 00000 00000  2,1000 0,1019
01995 0,8005 0,0000 0,000 00000 00000 00000 00000 00000 00000 22000 0,1067
01640 10,8360 0,0000 00000 00000 0,000 00000 00000 00000 00000 23000 01114
00935 09065 0,000 00000 00000 0,000 00000 00000 00000 00000 25000 0,1208
0,000 1,0000 0,0000 00000 00000 0,0000 00000 00000 0,0000 00000 27682 01333
TABLE Il
EFFICIENT PORTFOLIOS USING LOWER SEMI-VARIANCE MODEL
ADPL ATPL BLJE DDJH DLKV DOMF ERNT HT  INGR VPIK Stdev.(%) Return (%)
05268 01216 00000 00030 00000 02010 00802 00675 00000 00000 04500 0,0000
05271 01218 00000 00028 00000 02010 00802 00672 00000 00000 04502 0,0001
05307 01238 0,000 00007 00000 02007 00797 00643 00000 00000 04518 0,0010
05711 01484 0,000 00000 00000 0,900 00724 00181 00000 00000 04724 0,0100
06018 01950 0,0000 00000 00000 0,423 00610 00000 00000 00000 05074 0,0200
06273 02513 00000 00000 00000 00716 00499 00000 00000 00000 05636 0,0300
06537 03074 0,0000 00000 00000 00000 00389 00000 00000 00000 06374 0,0400
06362 03417 00000 00000 00000 00000 00221 00000 00000 00000  0,6805 0,0450
06181 03762 0,000 00000 00000 0,000 00057 00000 00000 00000  0,7282 0,0500
05498 04502 0,0000 00000 00000 0,0000 00000 00000 0,0000 00000  0,8346 0,0600
04748 05252 0,0000 00000 00000 0,000 00000 00000 00000 00000 09530 0,0700
0,3998 0,6002 0,0000 00000 00000 00000 00000 00000 00000 00000 1,788 0,0800
03247 06753 0,0000 00000 00000 0,000 00000 00000 00000 00000  1,2096 0,0900
02872 07128 0,000 00000 00000 0,000 00000 00000 00000 00000 12764 0,0950
02497 10,7503 0,0000 0,0000 00000 0,0000 0,0000 00000 0,0000 00000  1,3441 0,1000
01747 10,8253 10,0000 0,000 00000 0,0000 00000 00000 0,0000 00000 14816 0,1100
00996 09004 0,0000 00000 00000 00000 00000 00000 00000 00000 16214 0,1200
00246 09754 0,0000 00000 00000 0,000 00000 00000 00000 00000  1,7629 0,1300
00021 09979 0,000 00000 00000 0,000 00000 00000 00000 00000  1,8056 0,1330
0,0000 1,0000 0,0000 0,000 00000 0,000 00000 00000 0,0000 00000  1,8085 0,1333
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TABLE IV
EFFICIENT PORTFOLIOS USING RANGE-BASED VOLATILITY MODEL

ADPL ATPL BLJE DDJH DLKV DOMF ERNT HT INGR  VPIK St Dev. (%) Return (%)

0,1772 0,0618 10,0443 10,0376 0,242 0,955 0,1552 0,002 0,0410 0,0631 0,3085 -0,0599
0,990 00727 00302 00218 00169 01979 01724 02013 0,0357 0,0522 0,3102 -0,0497
0,2208 10,0836 00162 0,060 00095 02002 0,1896 02025 0,0304 0,0412 0,3152 -0,0396
0,2448 0,936 00023 0,0000 00028 02023 02078 0,1992 0,0217 0,0255 0,3238 -0,0294
0,2742 0,1079 10,0000 0,0000 0,0000 02028 02233 0,1807 0,0099 0,0012 0,3380 -0,0192
0,3002 0,1341 0,0000 0,0000 0,0000 0,1957 0,2349 0,1344 0,0007 0,0000 0,3611 -0,0091
0,3237 10,1639 10,0000 0,0000 0,000 0,1882 02451 00791 0,0000 0,0000 0,3942 0,0011
0,3470 0,1939 10,0000 0,0000 0,0000 0,1807 02553 0,0232 0,0000 0,0000 0,4355 0,0113
0,3426 02457 10,0000 0,0000 0,0000 0,1647 02471 0,0000 0,0000 0,0000 0,4849 0,0214
03185 10,3129 10,0000 0,0000 0,0000 0,1428 02259 0,0000 0,0000 0,0000 0,5482 0,0316
0,2944 03800 0,0000 0,0000 0,0000 0,1209 02047 0,0000 0,0000 0,0000 0,6219 0,0418
0,2703 04472 10,0000 0,0000 0,0000 0,0989 0,1836 0,0000 0,0000 0,0000 0,7027 0,0519
0,2462 05144 00000 0,0000 0,000 00770 01624 0,0000 0,0000 0,0000 0,7885 0,0621
0,2221 05816 00000 0,0000 0,000 00551 01413 0,0000 0,0000 0,0000 0,8779 0,0723
0,1980 06487 0,0000 0,0000 0,0000 0,0332 0,1201 0,0000 0,0000 0,0000 0,9697 0,0824
0,1739 0,7159 0,0000 0,0000 0,0000 0,0113 0,0989 0,0000 0,0000 0,0000 1,0634 0,0926
0,1438 0,7845 10,0000 0,0000 0,0000 0,0000 0,0717 0,0000 0,0000 0,0000 1,1587 0,1028
0,074 08545 0,0000 0,0000 0,0000 0,0000 0,381 00000 0,0000 0,0000 1,2554 0,1129
0,0710 09245 0,0000 0,0000 0,0000 0,0000 0,044 00000 0,0000 0,0000 1,3535 0,1231
0,0000 11,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 1,4530 0,1333

The results of the three different volatility estimators show Efficient frontier: mean-variance model

that using different volatility estimator yields with different 014

weights of stocks in a portfolio, which results in different 012 //

ranges of return and risk. However, the highest risk is found 01 ———

with mean-variance model. It ranges from 0,57%, when E 0.08 /

diversifying portfolio and investing in all but one stock 2 006 =

(INGR) yielding a return of -0,04%, to 2,77% when investing g 0o _~

in only one share (ATPL), yielding a return of 0,13%. When €00 7

considering lower semi-variance, the risk ranges from 0,45%, ° os / . 15 ) 2

when diversifying portfolio and investing in ADPL, ATPL, e /

DDJH, DOMF, ERNT and HT yielding 0,00% return, to oo Portholio risk

1,81% when investing in only one stock (ATPL) yielding

oY ' Fig. 2 The efficient frontier based on the mean-variance model
return of 0,13%. The lowest risk is measured with range-based

estimator ranging from 0,31%, when diversifying risk and Efficient frontier: lower semi-variance model
investing in all the stocks with different weights yielding the
negative return of -0,06%, to 1,45% when investing in ATPL 0.13 /"
yielding the return of 0,13%. The highest return for all 011 /
estimators is 0,13% since they all have the same stock in the S 008
last portfolio. E 007 _—

It can be concluded that perhaps intraday range-based 2,05 /
volatility estimator underestimates the risk compared to the 5 D'Ds /
two other volatility estimators. However, the results of the ex- ' /
post analysis test the performances of the models. 00t 17

The computed efficient frontiers are plotted on the mean- 00logr— w5 08 1 Tz I& 15 1B

variance coordinate system for the mean-variance model, Portfolio risk

lower semi-variance and intraday range-based volatility model  F
and are presented in Figs. 2-4.

In the second step, an ex-post analysis is performed by
investing in a portfolio of stocks using the calculated portfolio
weights. The stock returns on the next trading day and the
calculated weights are used to calculate for each model the
portfolio returns. The results are presented in Table V.

g. 3 The efficient frontier based on the lower semi-variance model

208



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:9, No:4, 2015

Efficient frontier: range-based volatility model

0,14

0.09 /

.E /
2 004
£ /
&
'0'0107/ 0,5 0,7 03 1,1 13 15
008 Portfolio risk
Fig. 4 The efficient frontier based on the range-based estimator
model
TABLEV
THE RETURNS (IN %) FOR THREE OBSERVED ESTIMATORS ON 16™ DECEMBER
2013
mean-variance  lower semi-variance  range-based volatility model
1 0,5039 0,3518 0,8597
2 0,0791 0,3513 0,7389
3 -0,2381 0,3466 0,6181
4 -0,4154 0,3030 0,5066
5 -0,3587 0,1332 0,4460
6 -0,3007 -0,1211 0,3999
7 -0,2405 -0,3796 0,3759
8 -0,1840 -0,3372 0,3537
9 -0,1301 -0,2947 0,3349
10 -0,0779 -0,1983 0,3185
11 -0,0270 -0,0996 0,3021
12 0,0228 -0,0009 0,2857
13 0,0718 0,0978 0,2693
14 0,1202 0,1471 0,2529
15 0,1681 0,1965 0,2365
16 0,2155 0,2952 0,2201
17 0,2625 0,3939 0,2536
18 0,3092 0,4926 0,3400
19 0,4019 0,5222 0,4264
20 0,5249 0,5242 0,5249

Assuming that 20 investors with different risk aversions
invest an equal amount of money, the highest return would be
obtained if the intraday range-based volatility estimator
approach were used. This investment strategy would yield in a
positive return for all risk aversions, while for portfolios from
1 to 15 it would yield in the highest portfolio return amongst
all risk measures. Portfolio return for range-based volatility
estimator ranges from 0,86% when diversifying risk to 0,52%
when investing in only one stock, i.e. ADPL. When the
investment is based on the mean-variance or lower semi-
variance approach, it yields both positive and negative returns,
depending on the risk aversion. Moreover, it yields lower
positive returns for more diversified portfolios than the
intraday range-based volatility approach. Notice that the last
portfolio considers a 100% investment in a single stock, i.e.
ATPL, and thereby denotes the portfolio with the highest risk.
This portfolio will earn the same amount regardless of the
chosen volatility estimators.

Given the mean-variance coordinates of the EF and the

performance of the 1-day ex-post analysis, we conclude that
the range-based volatility model outperforms both the mean-
variance and the lower semi-variance models when
constructing EF.

VI11.CONCLUSION

According to Markowitz, rational investors are only
interested in the lower semi-variance because this estimator
measures the risk of losses below a certain threshold, i.e.
losses of interest to the investor. Rational investors are
concerned about losses, because they want to control their
portfolio risk at every point in time. When financial returns do
not follow a normal distribution the standard deviation can be
replaced by the lower semi-variance. Since both estimators use
a single daily price observation in estimating the volatility,
intraday volatility estimators can be considered as an
alternative. According to [8] intraday volatility estimators are
assumed to be unbiased. However, high frequency data induce
microstructure effects and some practical limitation since they
do not exist for all assets. The range based intraday volatility
estimator has gained interest in recent literature. It is a more
efficient estimator than the daily squared close-to-close return
and it is relatively robust to microstructure effects. However,
since there is no multivariate analogue of the range-based
volatility estimator, the conditional variance-covariance
matrix is estimated by a EWMA-based model, which forms
the basis for the mean-variance portfolio estimation. The EFs
are constructed based on all three volatility estimators. Their
performances are compared in the next out-of-sample trading
day.

The EF based on these three types of volatility measures
show different levels of expected returns, portfolio risk and
portfolio diversification. Thus, the EF differs in location on
the mean-variance coordinates. The results of the three
different volatility estimators show that the highest risk is
found with mean-variance model and the lowest risk is
measured with range-based estimator.

The efficient portfolios based on the intraday range-based
volatility estimator outperforms the alternative volatility
estimators for most risk levels when considering the
investment in these portfolios and the returns on the next
trading day.

This research shows that the choice of the risk estimator is
important in constructing the EF since the portfolio weights
differ and thus the choice of the investment.

For further research, we suggest to extend this theoretical
research by including a longer period and to include more
volatile periods like the recent credit crisis of 2007 and 2008.
Intraday volatility has the interesting property of using
multiple intraday observations to determine the daily
volatility. According to Markowitz, rational investors are only
interested in the risk of a negative return. Therefore it would
be interesting to investigate the performance of a semi-
variance version of the range-based volatility model on a set
of financial assets.
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