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Explicit Chain Homotopic Function to Compute
Hochschild Homology of the Polynomial Algebra

Z. Altawallbeh

Abstract—In this paper, an explicit homotopic function is
constructed to compute the Hochschild homology of a finite
dimensional free k-module V. Because the polynomial algebra is of
course fundamental in the computation of the Hochschild homology
HH and the cyclic homology CH of commutative algebras, we
concentrate our work to compute HH of the polynomial algebra, by
providing certain homotopic function.
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|. INTRODUCTION

N order to interpret index theorems for non-commutative

Banach algebras, [2] developed cyclic homology as a non-
commutative variant of the de Rham cohomology which is
illustrated very well in [1]. In different other sources, cyclic
homology appeared as the primitive part of the Lie algebra
homology of matrices by [4]. The cyclic homology of an
algebra A consists of a family of abelian groups C,(4),n = 0
which are in characteristic zero, the homology of the quotient
of the Hochschild complex by the action of the finite cyclic
groups. Thus cyclic homology is a variant of Hochschild
homology in such a way. Loday [3] worked on cyclic
homology and Hochschild homology and provided different
aspects of uses of these kinds of homologies. The example of
polynomial algebra is very important in #H in the sense of
commutative algebras, because polynomial algebras can be
underlying algebra of differential graded models that can be
used to perform computations. Also, Hochschild homology
computations of polynomial algebra can be generalized to
smooth algebras and symmetric algebras because polynomial
algebra is a symmetric algebra of a finite dimensional free k-
module.

Loday [3] proved that the Hochschild homology of
polynomial algebra is the module khéler differentials (the
module of differential forms); He introduced a commutative
differential graded algebra with a certain product there to get
an isomorphism commutative differential graded algebras.

Here we are trying to have different approach to get the
same result by constructing an explicit homotopic function to
get a free resolution that is necessary to find the Tor functor
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there. This technique can be carried out to calculate
Hochschild homology of different kind of algebras.

Il. PRELIMINARIES

Definition 1 [5]. Let K be a commutative ring, and M be an A-
bimodule of an associative (not necessarily commutative) K-
algebra A. We define the Hochschild complex CH.(A, M) as
the sequence of maps

b b b b b
MBS M AT IS S MM ..

where the module M®A®" is in degree n. The Hochschild
boundary map b: M®A®" Imeantis given by

b(m® 4@ Q0@ .. @P=m ®aR®a® .. ®
an+21il=_11(_1)lm® 0GR ®.. ® @, ® .. ® g+
(D'am® ¢a®a, Q.. ® 44 (l)

for me Mand aq; €4 for all i=12,..,n. The homology
groups of the Hochschild complex CH, (4, M) are called the
Hochschild homology groups HH,, (4, M).

Definition 2 [3]. For A unital and commutative algebra, let
Q}/k be the A-module of Kahler differentials. It is generated

by the k-linear symbols da for a e A(So d(Aa+ub)=2 da +

udb, where 2, u € k and a, b € A) with the relation du = 0, for
u€E k

Definition 3. Let 4 be a unital and commutative algebra. Then
A-module of differential n-forms Q. is, by definition, the
exterior product Q} x = A3 @} /. The exterior is spanned by
the elements agdaj;Ada;A ... Adg for a; € A, that can be
written as agda,da, ...d g,.

Example 1 [3]. Let v be a free module over k and let A = &)
be the symmetric algebra of v. If V is finite dimensional with
basis x;,x,,.., x, then one gets the polynomial algebra
S(V) = k[xq,%5,.., %]. Then we get a great result that
SWV®V = 05 x,a ®v — adf@o see the proof of the given
isomorphism, then please look to [3], page 26).

Definition 4. Let 4 be a k-algebra. Then the opposite algebra
of A is denoted by A°P and the product of a and b in A is
given by a.b = ab (where the product is in the algebra 4). In
addition to, the algebra A¢ is the enveloping algebra and
definedas 4° =4 ®4A.

Definition 5 [6]. Given a module M, a projective (free)
resolution of M is an infinite exact sequence of modules

M,—-M, 1—— M—>My—M —0

with all the projective (free) modules M;, where0 <i <mn
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Definition 6. Let R be a ring. For 4 is a right R-module and B
is a left R-module, we construct a projective resolution of A as
M,—>M, > —>M —>My—A—0. Then, the
homology of the complex M,®B — M,_{®zB — - —
M;®rB — My®gB is called the Tor functor and denoted by
TorR(4,B).

111. COMPUTING THE HOCHSCHILD HOMOLOGY OF THE
POLYNOMIAL ALGEBRA

Theorem 1 [3]. If the unital algebra A is projective as a

module over k, then for any A-bimodule M there is an
isomorphism

HH,(A,M) = Tor;2°(M, A)

Example 2. Let A = R[x] be the polynomial algebra of one
variable x . We try to find its Hochschild homology groups.
From the last theorem, we get

HH,(4,A) = Tor,"®4° (4, 4) = Tor,*®4(4, A).

Now, A® <x>®Ais free A®A-module where <x>=
{rx:T € R}. Let us construct the following sequence

m do dy
0cA—ARA AR < x> QA «

where m(a®b) = ab for a,b € A and dy(c®x®d) = cx®d —

c®xd for c,d € A.

Claim 1. The above sequence is exact.

Proof:

a) We try to prove that im(dy) c ker (m). To do so, take
cx®d — c®xd € im(d,). Then

m(cx®d — c®xd) = cxd — cxd = 0.

Thus,
cx®d — c®xd € ker(m).

So,
im(d,) < ker(m).

b) We will prove ker(m) c im(d,).
Let h_; =0, and we try to find n;, for i=10,1,2 in the
following sequences:

0 m dg dy
0cAcARQAAR < x> RA«
NhoyNhy Ny N h,

0 m dg dy
0AARA—AR < x > QA «

Since h; for i = 0,1,2 is homotopic, then for any a € 4, we
have h_,(0(a)) + m(hy(a)) = a, s0 m(ho(a)) = a. That means,
we can take hy(a) = 1®a. Now, if ¥, a;; ®b;; € A®A such
that Y7, a, ; ®by; € ker (m). We have

n n n
ho (‘m (Z a; ®b1,i)> +d, <h1 <Z ay; ®b1,i)) =, ’ a1, ®by; .
= = =

So,
ho(0) + d, (hl <Z A ®b1,i>> = ) a;;®Dby;.
i=1 i=1
Then
do <h1 (Z Ay, ®bl,i>> = Z a1, @by ;.
i=1 i=1
That means

n
Z a,; ®by; € im(dy).

i=1

This completes the proof of ker(m) c im(d,).
Combining both parts (a) and (b), we get

ker(m) = im(d,).

This completes the proof of claim 1.
Now, let us define h, such that

hom + dghy =1
Let 1® 1 € A®A. To find h, (1®1), we have:

ho(M(1®1)) + do(hy (1®1)) = 1®1.

So,

ho(1) + do (R (1®1)) = 1®1.
That means

1®1 + do(h (181)) = 1®1.
and so,

do(h;(181)) = 0.
Thus, we define h,(1®1) =0. Similarly, h,(1®x™) =0 in
A® <x>®A for n=0,1,2,.. Now, we can find h,(x® 1),
such that
ho(m(x®1)) + dy(h;(x®1)) = x®1.

Thus,

ho(x) + do(hy (x®1)) = x®1.

1®x + do(hy (x®1)) = x®1.

That means,
do(h(x®1)) = x®@1 — 1®x.

Thus, we define h, (x®1) = 1®x®1. Similarly, we can find
hy(x?®1) = x@x®1 + 1Qx®x,

and
h(x3®1) = x?@x®1 + 1@x®x? + x@x®x.

Claim 2. b, (x"®1) = ¥ x'@x@x™i"L,
Proof. We know that

ho(M(x"®1)) + do (hy (x"®1)) = x"®1.
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If we replace h,(x"®1) by Y xi®x®x""~! in the above
equation, we find

n-1

ho(x™) + do(z * @x@x"" 1)) = x"@1.

Then

n-1
1®x" + Z do (X' ®x@®x"71) = x"@1.

i=0

But,

n-1
Z do(¥'@x@®x"" 1) = x@x™ ! — 1@x™ + x2@x" 2 — x@x" ! + x3@x" 3
=0

—x2@x" 2+ -+ x"®1 — x"2@x = x"®1 — 1@x™.

This completes the proof of claim 2.

Claim 3. The map d, is the zero map.

Proof. Because we are looking to have the following sequence
to be exact

m dg dy
0—A—ARA < A® < x > ®A «,
We have ker(d,) = im(d;). Now,
hl(do(a®x®b)) = h;(ax®b — a®xb),

fora,b € A. If we put a = 1 and b = 1, we get
Ry (do(1®x®1)) = hy (x®1 — 1®x) = 1®x®1.

Now, put a = x and b = 1, then we get
hy(do(x®x®1)) = hy (x?@1 — x@x) = x@x®1 + 1®x®x — hy (x®x).

Replacing h; (x®x) by 1®x®x will make sense in the above
equation, so

h (x®x) = 1®x®x.

Thus
hy(do(x®x®1)) = x@x®1.

That means the map h,d, is the identity map, so
ker(d,) = 0.
As we said in the beginning of the proof of claim 3 that
ker(d,) = im(d,).
Thus, d; = 0, and so that we get this free exact sequence:
0cACARAC AR <x> A0,

Tensoring with 4 over A®A and removing the first term 4, we
get

0 — (ARA®A L (4® < x> ®A)®A — 0
=l a =lp

0 A i <x>Q®A —0
where the maps d, x 1, @, and g are defined as

do x 1((a®x®b)®c) = (ax®b — a®xb)®c,
a((a@b)@c) = ach,

and

B((a®x®b)®c) = x®ach.
Computing

a((do x D((a®x@b)®c),
We get

a((do x 1)((a®x®b)®c) = a((ax®b — a®xb)Rc)
= a((ax®b)®c) — a(a®xb)®c) = (ax)cb — ac(xb)
=0.

Since a((dyx1) =0 and a((dy, x1) =1p(B), we get the
result

Y =0.

Also, since the maps a and g are isomorphism maps, then we
have that the sequence

oxl
0 — (ARA)BA < (A® < x > ®A)®4 — 0
is the same as the sequence

0 A <l£ <x>QA «— 0.

Finding the homology groups of the sequence

P=0
0e—A—<x>QRA—0.
We find,
HHy(A) = A, HH,(4) =< x > ®A = Q1(A)

and
HH,(A) =0forn > 2.

Example 3. Let A = R[xy, x5, ..., x,]. We are trying to find the
Hochschild homology HH,(A4). Now, we show that the
following sequence is exact with given an explicit chain
homotopic k; fori = -1,0,1,2,..,n — 1:

0 m do di  dpe 0
0 AARA—ARQVRA < ... — AQN"VR®A <0
NhoyNhy Ny . N b,

0 m do d;  dp-1 0
0cAcARA—ARQVR®A < ... — ARQA"V®A <0
where

V = (xq, Xg, ) X)) = {Myxqy + myxy + - + myx,, m; € R}

and
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die(a®x; Axi,A .. N xy,, ®b)

k+1

= > {DMax,@ %A A, @)
=1

+(=D/a®x; A ARy A xy,,, ® xi;b}
where the notation a?il. denotes that the element is deleted and

Ries1 (0@ x5, A ... A x;, @b)
_ {1®xl® Xy, N . A x;, ®b I > max{iy, ..., iy}
0 o0.w.

Claim 1. For V4, ees Uy € {X1, %2, oo, X}y

(di-1 ° di) (@®ViA ... Avg 1, ®b) = 0.

Proof: (Conceptual proof)

1. The term v;v; is multiplied by a: If i is first and j is
second: D/(-D"™aviv; @ vy A AD; Ao Avgy 1 ®D
and for i is second and j is  first
(D1 av;v; ® vy A e A Dy A e A DA .. AUy, ®D.

2. The term v;v; is multiplied by b: If i is first and j is

second:
DT DM@ vy A AD A ADIA A V1 @ Vv
and for { is second and j is first:
(—DI=1a® vy A e AD; A e ADIA . A Vjes1 ® V05D

3. The term v; is multiplied by a and v; by b: If i is first and

is second:
( DI (=D av; @ vy A A D A A v, @ vib and for i
is second and j is first:

(-1 (-D"*av; @ vy A AV A e ADIA e AVpy1 ® ;b

4. Thetermv; is multlplled by b and v; by a: If i is first and
j is second:
(DI (D'av; ® vy A AD; A e AN . A vy, @ vib and
for i is second and j is first:
(DD av; @ vy A AD; A e ADA . AV ® vib.

When we add all the terms in the above possibilities, it is

clear that all of them are deleted together, so we get dy_, o

d, =0.

Claim 2. Rye1(di (0@ V3 A VA .. AUy ®B)) +

dk+1(hk+2(vl® VA VA LA 17k+1®b)) =

1,® VA VA .. AV, ®D.

Proof: (Conceptual proof)

1. Ifl>max{1,2,..,k+ 1}, then

Rieir (A0 ® V1A VA .. A Vg1 ®D))

k+1

= s Z{(q)f“ulu,@ U A ADA o A Dpey 1 ®b

Jj=1
+ (1), @A . A DA .. A Vjes1 ® s}

k+1

= Z{(—l)f“v@ U AVIA e A DA o A Vg
j=1

+ (DM@ v AviA A DA A V@ b
+ (=110 v AV A . A DA .. A vy ® vjb}

in the other hand,

dics1(rk+2(® V1IA VA .. A V4, ®D))
= 0 AV A e ABA o A Vs

k+1

+Z{< 1I0,® v AV A A DA o A Dy, ®b
j=1

+ (1)1 vy AvA . A DA .. A Vs ® b}
It is clear that

Riey1 (A (V@ Vi A VA .. AUy ®D)) +
dk+1(hk+2(vl® viA VA LA Vk+1®b)) =@ VAV A .. AV ®D.

2. Ifl <max{1,2,..,k+ 1}, then

dic+1(Pics2 (0 ® V1A VA .. AUy ®D)) = djes1(0) = 0.

Now,
his1 (0 ® VA VA A Vj1 ®D)) =
R [ D 0w @ vy A  ADIA . A vy ®D +
D/ ®vA . ADIA . AV @ vjbY]| =
(—D**20,@v Ay A AV ® b =
DD 9@ vy A AV Avg 1 ® b =
1, ® VAV N\ . AV 1 ®Db.

Thus,
Ricy1(de (0 ® V3 A VoA .. AV, ®D)) +
dk+1(hk+z(171® IZUNZYTAA 17k+1®b)) =
1 ® 1A VA AV ®D.

From the above claims, we guarantee the following sequence
is free resolution of A

0 m dy dp—q 0
0-AcAQA < ...— AQN'V®A <0

Tensoring with A over A®A and removing the first term A, we

doXidy dn 1Xidg
get (ARA)®A —— ...— (AQA"V®A)®A where the terms
are isomorphic to the sequence

HH, (A) = A"V ®A = A® A"V
Alvesl  lavea

Thus, HH,(A) = A HH;(A) =V®A=A®V and the nth-
Hochschild homology group is

HH,(A) = A"V®A = AQ\"V

where the higher Hochschild homology groups for m = n + 1,
by definition 3 and example 1, we get

HH;(A) = 2}, HH,(A) = 023, ..., HH,(A) = 03}
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