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 
Abstract—New physical insights into the nonlinear Lorenz 

equations related to flow resistance is discussed in this work. The 
chaotic dynamics related to Lorenz equations has been studied in 
many papers, which is due to the sensitivity of Lorenz equations to 
initial conditions and parameter uncertainties. However, the physical 
implication arising from Lorenz equations about convectional motion 
attracts little attention in the relevant literature. Therefore, as a first 
step to understand the related fluid mechanics of convectional motion, 
this paper derives the Lorenz equations again with different forced 
conditions in the model. Simulation work of the modified Lorenz 
equations without the viscosity or buoyancy force is discussed. The 
time-domain simulation results may imply that the states of the 
Lorenz equations are related to certain flow speed and flow resistance. 
The flow speed of the underlying fluid system increases as the flow 
resistance reduces. This observation would be helpful to analyze the 
coupling effects of different fluid parameters in a convectional model 
in future work.  
 

Keywords—Galerkin method, Lorenz equations, Navier-Stokes 
equations.  

I. INTRODUCTION 

AVIER-Stokes equations [1] are widely considered for 
describing the dynamic equilibrium of many fluid 

systems. The equations consider a control volume of a fluid 
system, which obeys the laws of conservation of energy, 
conservation of mass, and conservation of momentum and the 
continuity equation. The typical Navier-stokes equations are 
expressed by 
 

,
t

          
v v v p T f  (1) 

0, v  (2) 
 
where v(u, v, w) is the flow velocity field, ρ is the flow density, 
p is the pressure field, T is the component of stress tensors, and 
f represents the other external body forces. Equation (1) shows 
dynamic equilibrium of the forces, where the right-hand side 
of (1) includes the internal and external forces acting on the 
flow control volume, and (2) is the continuity equation. In the 
fluid mechanics literature, Navier-stokes equations are general 
to include many different forced conditions for establishing 
mathematical models of atmosphere system [2], ocean 
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currents, flow in a pipe [3], and many other fluid systems. 
Often the Navier-stokes equations are expanded to a set of 
partial differentiation equations (PDEs) for further analysis 
work. 

For example, E. N. Lorenz had made an attempt to derive 
the mathematical model for atmosphere convection and 
weather prediction [4], [5] based on the Navier-Stokes 
equations. In his model, it is expected that small-scale 
disturbances, such as breeze, would not influence the 
large-scale weather phenomena. However, Lorenz detected 
that the prediction or solutions of the atmosphere models 
considerably vary with small disturbances and slight changes 
in the initial conditions. This kind of small disturbances 
incurring considerable solution variations could not be omitted 
or simply be attributed to numerical computation problems. 

In 1963, Lorenz used Barry Saltzman’s models and methods 
[6] to explore the small perturbations issues. The fluid model 
was based on the Navier-Stokes and thermal diffusion 
equations to discuss about the natural convective motion [7]. 
In their work, the complex PDEs are transformed into three 
nonlinear ordinary differential equations (ODEs) via the 
Fourier and Galerkin methods as  

 
,x x y     

(3) ,y xz y x     

.z xy z   

 
The three nonlinear ODEs are known as the Lorenz 

equations. In (3), x, y, and z are the state variables, and σ, β, 
and γ are the associated dynamic parameters. Time-domain 
simulation of the Lorenz equations exhibit irregular/ 
non-periodic trajectories in a three dimensional state space. In 
addition, as the simulation time increased, two spirals 
appeared in the space. Thus, Lorenz showed that deterministic 
ODEs with small changes in the initial conditions eventually 
resulted in difficult-to-predict and nonperiodic solutions. 

Because the ODE expression provides a concise and 
systematic foundation for dynamics analysis, in the last decade, 
many studies focused on stability, chaotic behavior, and 
synchronization control of Lorenz equations. However, not 
many studies trace back to the original fluid model in PDE 
form, to discuss the physical implication for the ODE 
parameters and state variables.  

Therefore, as a first step to understand the physical meaning 
behind the Lorenz equations, this paper modifies the forced 
terms in the Saltzman’s PDE model to examine the changes in 
the ODE model. Section II of this paper will introduce the 
derivation of the Lorenz equations in detail. Then, in Section 
III, the PDE based on the Saltzman’s convection model are 
modified according to different forced conditions; thus, the 
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ODE state variables can be analyzed individually. Simulation 
results of the modified Lorenz model are discussed in Section 
IV, showing the new physical insights as to flow resistance. 
Finally, the conclusion of work is provided in Section V. 

II. REVIEW OF DERIVATION OF LORENZ EQUATIONS 

The derivation of Lorenz equations with reference to [4]-[6] 
is presented in this section; the parameters and variables 
involved in the derivation and in this paper are summarized in 
Table I. First, the convection model underlying the Lorenz 
equations is introduced. As shown in Fig. 1, the distance 
between the two parallel plates is H, and the origin of the 
coordinate system is defined at the center of the lower plate. 
Accordingly, d is the width between the z axis and the lateral 
boundary, and TH and T0 denote the boundary temperatures at 
z = H and z = 0, respectively. In addition, the upper and lower 
plates are assumed to have free boundary conditions without 
stress; the lateral boundaries are dispensed, which means that 
the liquid is free-flow in the x-axis direction. On the basis of 
Navier-Stokes equations, the convection model considered by 
Saltzman and Lorenz further assumed that: (a) the y-axis 
dynamics is irrelevant and only the motion in the x-z plane is 
considered; (b) the fluid is incompressible despite of 
temperature variations; (c) the conductive state temperature 
changes linearly from z = 0 to z = H; (d) the dynamic 
equilibrium is independent of pressure. 

 
TABLE I 

NOTATION FOR DEVIATION OF LORENZ EQUATIONS 

Symbol Description 
v flow velocity field 
T temperature 
θ temperature departure 
ψ stream function 
g acceleration of gravity 
ν kinematic viscosity rate 
α thermal expansion rate 
κ thermal diffusion rate 
k wave number in the x direction 
n wave number in the z direction 
H distance between the plates 
d width  
σ Prandtl number 
γ Rayleigh number 
Rψ residual function of stream function 
Rθ residual function of temperature departure function 

 

 

Fig. 1 Convection model in the x-z plane 
 

According to the four assumptions and Fig. 1, the specified 
Laplace operator defined in this model is written as  

 
2 2

2
1 2 2

.
x z

 
  

 
 (4) 

 
The y-direction terms are omitted according to the (a) 
assumption. Then, the convection models described by 
Saltzman and Lorenz are shown as  
 

 2
1 1 0 ,g T T

t
 

     


v v v v  (5) 

1 0,  v  (6) 

2
1 1 .T T T

t


   


v  (7) 

 
Equation (5) is modified from (1) with the addition of 
buoyancy due to temperature, and the constant pressure field is 
omitted. The continuity of fluid is addressed in (6), and (7) 
shows the thermal diffusion equation to predict the thermal 
convection. In addition, κ, T, ν, α, and g denote the thermal 
diffusion rate, temperature, kinematic viscosity rate, thermal 
expansion rate, and gravitational acceleration, respectively; 
see the notation summary in Table I. Furthermore, because of 
the (c) assumption, the temperature departure function, 
θ(x, z, t), is defined as 
 

   0 H 0 .
z

T T T T
H

      (8) 

 
Then, the associated variables are normalized though the 
factors [8] 
 

* * *
2

,   ,   ,
x d

x t t
d d




  v v  (9) 

* *0

0

.
H

T T
z

T T



 


 (10) 

 
Thus, x*, v*, t*, θ*, and z* are the dimensionless variables 
associated with x, v, t, θ, and z, respectively. In the rest of this 
paper, the equations and variables are all dimensionless, and 
the asterisk symbol is omitted for brevity. With the 
substitution of (9) and (10) into (5)-(7), the normalized model 
are expanded and arranged to 
 

 

2
1

3
02

1 2

,
H

u u u
u w u

t x z

g T T dw w w
u w w

t x z




 
 

         
           

 (11) 

0,
u w

x z

 
 

 
 (12) 

2
1 ,u w w

t x z

     
   

  
 (13) 

 
where w is the dimensionless velocity along the z axis. From 
(12), a stream function is defined as ψ(x, z, t), which satisfies 
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,  and  .u w
z x

  
  

 
 (14) 

 
Substitution of (14) into (11)-(13) reduces the three equations 
to  
 

 

2 2 2 4
1 1 1 1

3
0

2
+ ,H

t z x x z

g T T d

x

     


 


    
      

    
 



 
(15) 

2
1 .

t z x x z x

          
    

     
 (16) 

 
To transform the PDEs of (15) and (16) into ODEs, the Fourier 
series expansion method is used, which assumes that the 
stream and temperature functions, ψ(x, z, t) and θ(x, z, t), are 
given by  
 

  0, , exp ,
k n

k n
x z t Hi x z

d H
  

 

 

       
   (17) 

  0, , exp .
k n

k n
x z t Hi x z

d H
  

 

 

       
   (18) 

 
In (17) and (18), k and n are the wave numbers in the x 
direction and z direction, respectively. In addition, θ0 = 
θ(x, z, 0) and ψ0 = ψ(x, z, 0) are the initial conditions. Expand 
(17) and (18) and preserve the first-order terms, (17) and (18) 
become 
 

       , , sin sin ,x z t a t k x z    (19) 

           , , cos sin sin 2 ,x z t b t k x z c t z     (20) 
 
where a(t), b(t), and c(t) are the time-dependent functions. 
Then, the Galerkin method [9] is used to solve a(t), b(t), and 
c(t) in Appendix, to yield the Lorenz equations in (3). In [5], 
Lorenz stated that the new states variables, x, y, z in (3) are 
proportional to the intensity of the convection motion, the 
temperature difference of ascending and descending flows at 
the two ends along the x axis, and the distortion of the vertical 
temperature, respectively. However, the detailed explanations 
and verification are not provided. 

III. MODIFICATION OF LORENZ EQUATION 

This section changes the forced conditions in (5) and (7) to 
obtain different form of modified Lorenz equations; the force 
terms are removed step by step. It is expected that the state 
evolution in relation to the different forced condition may 
show some helpful hints on the physical implication about the 
state variables. First, the buoyancy term in the right-hand side 
of Navier-stokes equation is removed; thus (5) becomes 

 

2
1 1 .

t


   


v v v v  (21) 

 
Second, when the viscosity force is omitted, the Navier-stokes 
equations is reduced to 

 0 .g T T
t


   


v

v v  (22) 

 
Equations (21) and (22) describe different fluid models 
induced by viscosity and buoyancy, respectively, and (6) and 
(7) are unchanged. With a similar approach to that introduced 
in Section II, the two modified Lorenz models related to 
viscosity and buoyancy are derived as: 
Viscosity + diffusion: 
 

x x     

.y xz y x      (23) 

z xy z     

   
Buoyancy + diffusion: 
 

x y    

.y xz y x      (24) 

,z xy z     

 
Equations (23) and (24) show that only the terms related to the 

 dynamics are changed, in comparison with that in (3); the 
remaining equations related to  and  are not affected.  

Furthermore, modification of the thermal diffusion equation 
in (7) is discussed. With the removal of the diffusion term, (7) 
becomes 

 

0,
T

T
t


  


v  (25) 

 
and the Navier-stokes and continuity equations are unchanged. 
Thus, (25) leads to the following modified Lorenz equations: 
Viscosity + buoyancy 
 

x x y       

.y xz    (26) 
z xy    

 
In this model, the equations related to  and  are different 
from those in (3), and the  equation is unchanged. In this 
section, three different form of Lorenz equations are proposed; 
simulation studies will be performed in the next section.  

IV. SIMULATION STUDIES 

Although three modified Lorenz equations with respect to 
(23), (24), and (26) are presented, only the (23) and (24) cases 
are discussed in this section to focus on the new observation. 
The chosen parameters for the simulation studies were σ = 10, 
r = 28, and β = 8 / 3, with reference to [5], [6]. The initial 
conditions of (x, y, z) = (30, 0, 0) were considered, and the 
simulation work was conducted in the Matlab and Simulink 
environments, with the simulation time set to three seconds. At 
this stage, we assume that the physical meaning of x, y and z 
are uncertain. However, the time responses of the states in 
relation to the forced conditions may give some hints about the 
physical meaning of x, y and z. 
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First, the simulation results of (23), the viscosity + diffusion 
case, are discussed. The numerical simulations show that the 
time responses of x(t), y(t) and z(t) finally settled down to zero. 
This means that with the removal of the buoyancy force, the 
chaotic dynamics do not happen. Furthermore, the simulation 
results of the buoyancy + diffusion case in (24) are drawn in 
Fig. 3. When the viscosity force was removed from the 
convectional model, only y(t) and z(t) gradually settled down 
to zero or a constant value, whereas x(t) is diverged and could 
be unstable and lead to chaotic responses. In addition, the time 
responses of x(t), y(t), and z(t) are arranged into a three- 
dimensional plot in Fig. 2, which interesting shows a vortex 
pattern. 

From the comparison of (23) and (24), it is envisaged that 
the chaotic behavior is incurred by the buoyancy force, and the 
viscosity force dissipates the flow energy. In addition, Fig. 3 
shows that as x(t) increases, y(t) and z(t) decrease. Therefore, it 
is envisaged that y(t) or z(t) is related to the flow resistance, 
and x(t) is related to the flow velocity. In other words, because 
the viscosity force is approximately zero, the flow resistance 
reduces and the flow velocity increases with time. Further 
analysis about the physical meaning and long-time simulation 
of the states is the authors’ ongoing work. 
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Fig. 2 Three-dimensional plot of simulation result of the modified 
Lorenz equations without the viscosity term 

V. CONCLUSIONS 

The physical motion of Lorenz equations is discussed in this 
paper. First of all, the derivation of Lorenz equations from the 
main literature is introduced. Then, the forced conditions of 
the fluid convectional model are modified in order to compare 
and examine the state response in relation to different forced 
conditions. Here, two cases related to the viscosity and 
buoyancy forces are considered, and simulation studies of the 
modified models are presented. The results imply that the 
chaotic dynamics is incurred by the buoyancy force, and the 
viscosity force tends to dissipate flow energy. In addition, it is 
envisaged that the x state is associated with the flow velocity 
and the y or z states is related to the flow resistance dynamics. 
Further work regarding the exact physical meaning of the state 
variables comprises the authors’ ongoing work. 
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Fig. 3 Simulation results of the modified Lorenz equations without 
the viscosity term 

APPENDIX 

The Galerkin method in [5], [9] is introduced. First, (15) and 
(16) are re-arranged to the residual functions, Rθ and Rψ, as  

 

 

2 2 2
1 1 1

3
04

1 2

( , , )

,H

R x z t
t z x x z

g T T d

x


   

 
 

    
     
    

 
  



 (27) 

  2
1, , .R x z t

t z x x z x
          

    
     

 (28) 

 
The residual functions are given by substituting (19) and (20) 
into (27) and (28). The stream function ψ is considered zero 
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because the vertical and horizontal velocities vanish at the free 
boundaries; in addition, the temperature departure θ is zero at 
the upper and lower plates. Then, apply the integration, define 
the boundary conditions, the three simultaneous equations 
related to a(t), b(t), and c(t) yield 
 

     

 
   

2 2

3
0

2 2 2

1

,
1

H

a t k a t
t

g T T d k
b t

k

 

 

 


  







 (29) 

           2 2 2 1 ,b t k a t c t k b t k a t
t

  
    


 (30) 

       2 21
4 .

2
c t k a t b t c t

t
 

 


 (31) 

 
With separation of variable for (29)-(31), the new variables are 
defined as 
 

 

 
 

 

 
   

 
 
   

2 2

2

33 2

2 3
0

33 2

2 3
0

1

2 1

2 1
( )

1
,

H

H

t
k

k
a t x

k

k
b t y

k g T T d

k
c t z

k g T T d






 




 











 




 



 

(32) 

 
The variables, a(t), b(t), and c(t), in (29)-(31) are replaced by 
(32); thus, (29)-(31) are transformed into the Lorenz equations 

in (3), where the parameters σ, γ, and β are given by 

 
1

, 


   (33) 

 
 

 
32 2

0

3 34 2 4 2
,

1 1

Hg T T dk k
Ra

k k




 


 

 
 

(34) 

2

4
.

1k
 


 (35) 

 
This completes the derivation of Lorenz equations. 
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