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 
Abstract—The development of allometric models is crucial to 

accurate forest biomass/carbon stock assessment. The aim of this 
study was to develop a set of biomass prediction models that will 
enable the determination of total tree aboveground biomass for 
savannah woodland area in Niger State, Nigeria. Based on the data 
collected through biometric measurements of 1816 trees and 
destructive sampling of 36 trees, five species specific and one site 
specific models were developed. The sample size was distributed 
equally between the five most dominant species in the study site 
(Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, 
Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the 
equations were developed for five individual species. Secondly these 
five species were mixed and were used to develop an allometric 
equation of mixed species. Overall, there was a strong positive 
relationship between total tree biomass and the stem diameter. The 
coefficient of determination (R2 values) ranging from 0.93 to 0.99 P 
< 0.001 were realised for the models; with considerable low standard 
error of the estimates (SEE) which confirms that the total tree above 
ground biomass has a significant relationship with the dbh. F-test 
values for the biomass prediction models were also significant at p < 
0.001 which indicates that the biomass prediction models are valid. 
This study recommends that for improved biomass estimates in the 
study site, the site specific biomass models should preferably be used 
instead of using generic models. 

 
Keywords—Allometriy, biomass, carbon stock, model, 

regression equation, woodland, inventory. 

I. INTRODUCTION 

ITH increasing CO2 in the atmosphere, there is an 
urgent need of reliable biomass estimates and carbon 

pools in tropical forests, most especially in Africa where there 
is a serious lack of data [1]. The Kyoto protocol requires 
transparent reporting of forest biomass changes which implies 
the use of precise procedure to quantify forest biomass and its 
uncertainty [2]. Allometric models are important for 
quantifying biomass and carbon storage in terrestrial 
ecosystems. Such models quantify the relationships between 
different dimensions of individual organisms [3], [4]. Field-
based forest methodologies require allometric equations to 
estimate forest biomas/carbon from indirect measurements 
because direct measurement of forest carbon is costly and 
destructive. The allometric equations generally relate the size 
of an easily measurable part of a tree, e.g. the diameter of a 
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tree trunk over bark at a specified height to the total dry 
weight of the tree [3].  

The development and application of allometric equations is 
the standard methodology for aboveground tree biomass 
estimation [5]-[7]. However, measurement methods for carbon 
storage in tropical forests are still evolving [8]. At regional 
scales, current allometric data for complex, diverse tropical 
forests are almost entirely based on Southeast Asian [3], [4] 
and South American measurements [8]. For instance, [3] and 
[6] reported a set of allometric equations for tropical world 
forests; however, several sites were not well typified in this 
dataset. The foregoing background motivated this current 
study in the savannah woodland area of Niger state, Nigeria. 

Allometric biomass models are regression equations that 
provide a relationship between tree fresh weight biomass and a 
tree dimension(s) such as dbh, or tree height [3]. To facilitate 
carbon stock accounting and verification, predictive models 
are required to provide the basis for more accurate estimates 
[3], [9]. A number ecozone specific allometric model would 
therefore be required to match the variability in tree biomass 
across all ecological zones and vegetation types. 
Consequently, allometric equations are preferably species-
specific and locally derived [1]. According to [10], the 
literature review revealed that very few studies providing 
allometric equations have been conducted in Africa. Besides, 
the few available allometric models are very narrow in 
geographical coverage and scope [3], [11]-[13]. In addition, 
most of these models included few species or only sampled a 
few trees [13], [3], [14]. Consequently, the inherent variability 
in environmental conditions within a single eco-zone such as 
savannah will obviously affect how well an allometric model 
applies to all locations within that zone. There is therefore, the 
need for refined version of allometric models [3], [2]. This 
necessitates regional site specific allometric models which is 
currently lacking in the study area. The aim of this study is to 
develop allometric models for predicting aboveground 
biomass in the savannah woodland area of Niger State. 

The conceptual framework for this study is based on the 
allometric scaling theory. Allometry is the relation between 
the size of an organism and the size of any of its parts [15]-
[17]. The allometric scaling theory suggests the existence of a 
universal power-law relationship between tree biomass and 
tree dimension(s) with a fixed scaling exponent close to 8/3. 
Allometric models are regression equations derived from 
mathematical functions that relate oven-dry biomass per tree 
as a function of a single or a combination of tree dimensions 
[3], [5]. 
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Fig. 8 Regression plots and line of best fit on raw data (top) and on 
logarithmic scale (bottom) for Vitellaria paradoxa species 

 
The line of best fit for the log transformed aboveground 

biomass and dbh for Vitellaria paradoxa species accounted for 
97% of the variability in the sample data (R2= 0.97). This is 
confirmed by the scatter of the observations around the line of 
best fit in the plot shown in Fig. 8. The points lie fairly close 
to the line of best fit which suggests that the biomass 
prediction model provides a good fit to the data. The standard 
error of the estimate is 0.18. The results also indicate that the 
F-value for the regression model is also significantly different 
from zero F(1,4) =134.6, P<0.001, which validates the model. 

Regression graphs of the allometric model developed for 
Irvingia gabonensis species is presented in Fig. 9. The R2 
value of the linear model of the log transformed total tree 
aboveground biomass and dbh is 0.99. An R2 value of 99 % is 
very close to 100%, and it indicates that the biomass 
prediction model provides a good fit to the data; confirmed by 
the scatter of the observations along the line of best fit. The 
observations are scattered very close to the line of best fit, 
which indicates that total tree aboveground biomass can be 
adequately predicted by the dbh. The standard error of the 
estimate is 0.06, while the results also indicate that the F-value 
for the regression model is significantly different from zero 
F(1,4) =1147.8, P<0.001, which validates the model. 

The line of best fit for the log transformed tree aboveground 
biomass estimated by log transformed dbh for Parkia 
biglobosa species accounted for 99% of the variability in the 
sample data (R2= 0.99). This is confirmed by the scatter of the 
observations along the line of best fit in the plot shown in Fig. 
10. The points lie fairly close to the line of best fit which 
suggests that the biomass prediction model provides a good fit 

to the data. The standard error of the estimate is 0.08. The 
results also indicate that the F-value for the regression model 
is also significantly different from zero F(1,4) =601.6, 
P<0.001, which validates the model. 
 

 

Fig. 9 Regression plots and line of best fit on raw data (top) and on 
logarithmic scale (bottom) for Irvingia gabonensis species 

 

 

Fig. 10 Regression plots and line of best fit on raw data (top) and on 
logarithmic scale (bottom) for Parkia biglobosa species 
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Fig. 11 Regression plots and line of best fit on raw data (top) and on 
logarithmic scale (bottom) for Anogeissus leiocarpus species 

 
The linear model of the log transformed tree aboveground 

biomass against the log transformed dbh of Anogeissus 
leiocarpus species has yielded R2 value of 0.99 thereby 
accounting for 99% of the variability in the sample data. This 
is confirmed by the scatter of the observations along the line 
of best fit in the plot shown in Fig. 11. The points lie along the 
line of best fit which suggests that the biomass prediction 
model provides a good fit to the data. The standard error of the 
estimate is 0.06; while the F-value for the regression model is 
also significantly different from zero F(1,4) =1050.3, P<0.001, 
and therefore the model is valid. 

The plot of the line of best fit for the log transformed tree 
aboveground biomass against the log transformed dbh of 
Pterocarpus erinaceous species showed that the observations 
are scattered around the regression line (see Fig. 12). This is 
indicative of slight variability. The linear model of the log 
transformed tree aboveground biomass against the pooled data 
of log transformed dbh yielded R2 value of 0.96 thereby 
accounting for 96% of the variability in the sample data. The 
standard error of the estimate is 0.22, while the F-value for the 
regression model is also significantly different from zero 
F(1,4) =91.40, P<0.001 which indicates that there is a positive 
linear relationship between total tree above ground biomass 
and the dbh and therefore the model is valid. 
 

 

Fig. 12 Regression plots and line of best fit on raw data (top) and on 
logarithmic scale (bottom) for Pterocarpus erinaceous species 

 

 

Fig. 13 Regression plots and line of best fit on raw data (top) and on 
logarithmic scale (bottom) for Site specific model 

 
For the Site specific model, the line of best fit for total tree 

aboveground biomass estimated by dbh is presented in Fig. 13. 
The plot of the observations and line of best fit showed that 
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the observations are scattered around the regression line. This 
is indicative of slight variability in the variety of mixed 
species involved. The linear model of the pooled data for the 
log transformed tree aboveground biomass against the pooled 
data of log transformed dbh has yielded R2 value of 0.931 
thereby accounting for 93.1% of the variability in the sample 
data. The standard error of the estimate is 0.25, while the F-
value for the regression model is also significantly different 
from zero F(1,28) =377.5, P<0.001 which indicates that there 
is a positive linear relationship between total tree above 
ground biomass and the dbh and therefore the model is valid. 

Table III presents the coefficients and fit statistics from 
fitting the biomass prediction models. The coefficient of 
determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 
were realised for the models; with considerable low standard 
error of the estimates (SEE) which confirms that the total tree 
above ground biomass has a significant relationship with the 
dbh. The F-test value for the biomass prediction models were 
also significant at p < 0.001 which indicates that the biomass 
prediction models are valid.  

 
TABLE III 

PARAMETER ESTIMATE AND PERFORMANCE OF DEVELOPED MODELS 

Model Type N 

Parameter Estimates Performance Criteria 

β0 β1 R2 SEE F-test 
Site Specific (General) 30 1.627 1.355 0.93 0.25 F(1,28) =377.5, P<0.001* 

Species Specific 6 1.190 1.393 0.97 0.18 F(1,4) =134.6, P<0.001 * 
Species Specific 6 1.559 1.329 0.99 0.06 F(1,4) =1147.8, P<0.001* 
Species Specific 6 1.825 1.340 0.99 0.08 F(1,4) =601.6, P<0.001 * 
Species Specific 6 2.052 1.305 0.99 0.06 F(1,4) =1050.3, P<0.001* 
Species Specific 6 1.513 1.407 0.96 0.22 F(1,4) =91.40, P<0.001 * 

Note: *= Statistically significant, SEE= Standard Error of the Estimate 
 

TABLE IV 
DEVELOPED SITE SPECIFIC AND SPECIES SPECIFIC ALLOMETRIC MODELS 

S. No. Model Species DBH Range (cm) 

1 AGB = exp{1.627 + 1.393 * Ln(DBH)} General Site Species 4<dbh<55 

2 AGB = exp{1.190 + 1.355 * Ln(DBH)} Vitalleria paradoxa 4<dbh<55 

3 AGB = exp{1.559 + 1.329 * Ln(DBH)} Irvingia gabonensis 4<dbh<55 

4 AGB = exp{1.825 + 1.340 * Ln(DBH)} Parkia biglobosa 4<dbh<55 

5 AGB = exp{2.052 + 1.305 * Ln(DBH)} Anogeissus leiocarpus 4<dbh<55 

6 AGB = exp{1.513 + 1.407 * Ln(DBH)} Pterocarpus erinaceous 4<dbh<55 

exp {…}means “raised to the power of {…}”; Ln means “natural log of (…)”; AGB = above-ground biomass in kg; DBH = diameter at breast height (1.3 m). 
 

An overview of the allometric models is developed in this 
study are shown in Table IV. The developed general (mixed 
species) model is recommended to be applied to savannah 
woodlands of where similar conditions exist as in the study 
site. 

IV. DISCUSSION 

From the fore going analysis, above-ground biomass 
generally increased with increasing stem diameter. The 
relationship between tree weight (W, kg) and stem dbh (D, 
cm) was best described by an exponential curve: where a and 
b are the regression constant and coefficient, respectively. The 
observed goodness-of fit of the models investigated was in 
agreement to previous works on the relationship between 
above ground biomass and dbh [12], [3], [25], [4]. The dbh 
was reported to explain about 95% of the biomass [10]. 
Similarly, according to reference [3], dbh alone explains more 
than 95% of the variation in aboveground tropical forest 
carbon stocks, even in highly diverse regions. Reference [26] 
pointed out that high correlations are common in biomass 
equations of woody species, and may be due to the fact that 
stem weight represents the major proportion of above-ground 
biomass. Similarly, [12], [3], [4] established that 
determination of woody plant biomass relationships with any 

of a series of morphometric variables usually yields highly 
significant results, especially after transformation of one or 
both sides of the dependent and independent variables. The 
findings from this research quite agree with such previous 
findings because improvement in R2 values was noticed when 
both sides of the dependent and independent variables used in 
this study were log transformed.  

V. CONCLUSION AND RECOMMENDATION 

The choice of an appropriate allometric model is a critical 
step in reducing uncertainties in forest biomass stock 
estimates. This study provides a scientific contribution for 
accurate estimations of biomass and carbon stock in savannah 
woodland. Based on the data collected through destructive 
sampling, six allometric models were developed. Firstly, the 
equations were developed for five individual species selected 
based on their importance value index. The parameters of the 
biomass equations were estimated using linear least square 
regression. Before establishing the allometric equation, scatter 
plots were used to see whether the relationship between 
independent and dependent variables was linear. The 
coefficient of determination (R2 values) ranging from 0.93 to 
0.99 P < 0.001 were realised for the models; with 
considerable low standard error of the estimates (SEE) which 
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confirms that the total tree above ground biomass has a 
significant relationship with the dbh. The F-test value for the 
biomass prediction models was also significant at p < 0.001 
which indicates that the biomass prediction models are valid. 

This work adds to the scanty but growing number of studies 
which demonstrate good relationships between some stem 
characteristics and total woody biomass in savanna 
woodlands, from which reliable biomass tables can be 

developed. The biomass prediction models derived here 
provide an ideal opportunity for further work on the 
verification of woody biomass calculations, thus leading to 
more meaningful estimations of standing woodland biomass 
stocks. This study recommends that for improved biomass 
estimates of study sites, the site specific biomass models 
should preferably be used instead of using existing generic 
models. 

APPENDIX I 
TABLE V 

DATA ON SAMPLED TREES 
S. NO. PLOT SPP CODE SPECIES NAME HEIGHT DBH BIOMASS (KG) 

1 15 55 Vitellaria paradoxa 7.1 7.3 57.8 

2 21 55 Vitellaria paradoxa 12.1 16.9 154 

3 9 55 Vitellaria paradoxa 16.6 25.2 269.5 

4 3 55 Vitellaria paradoxa 22.3 35.7 385 

5 30 55 Vitellaria paradoxa 26.1 41.4 616 

6 3 55 Vitellaria paradoxa 24.4 43.6 808.5 

7 5 36 Irvingia gabonensis 9.6 7.0 66.6 

8 28 36 Irvingia gabonensis 12 17.2 199.7 

9 13 36 Irvingia gabonensis 13 25.8 332.9 

10 26 36 Irvingia gabonensis 22.2 33.7 488.2 

11 17 36 Irvingia gabonensis 24.4 43.3 732.3 

12 2 36 Irvingia gabonensis 39.1 53.2 998.6 

13 15 43 Parkia biglobosa 8.5 7.3 90.9 

14 29 43 Parkia biglobosa 12.2 16.9 272.8 

15 7 43 Parkia biglobosa 16.7 25.8 485 

16 2 43 Parkia biglobosa 18.4 35.7 697.1 

17 6 43 Parkia biglobosa 28.2 43.0 879 

18 26 43 Parkia biglobosa 27.8 50.6 1364 

19 4 11 Anogeissus leiocarpus 5.6 7.0 101.6 

20 30 11 Anogeissus leiocarpus 12.6 16.6 304.9 

21 12 11 Anogeissus leiocarpus 16.6 25.5 508.2 

22 23 11 Anogeissus leiocarpus 19.4 35.4 745.4 

23 25 11 Anogeissus leiocarpus 28.1 43.3 1118 

24 25 11 Anogeissus leiocarpus 32.2 52.6 1456.8 

25 10 47 Pterocarpus erinaceous 8.6 7.0 75.8 

26 20 47 Pterocarpus erinaceous 11.2 16.9 227.4 

27 22 47 Pterocarpus erinaceous 17.7 25.8 379.1 

28 2 47 Pterocarpus erinaceous 15.1 36.6 555.9 

29 15 47 Pterocarpus erinaceous 9 37.6 833.9 

30 1 47 Pterocarpus erinaceous 23.2 39.2 1061.3 

VALIDATION 

31 12 55 Vitellaria paradoxa 7.3 5.7 47.3 

32 29 47 Pterocarpus erinaceous 15.6 12.4 147.5 

33 18 43 Parkia biglobosa 18.6 22.9 370.7 

34 25 55 Vitellaria paradoxa 20.2 36.6 640 

35 8 36 Irvingia gabonensis 25.5 42.0 795.5 

36 23 11 Anogeissus leiocarpus 34 58.9 1250.1 
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