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Abstract—Electroencephalogram (EEG) is a noninvasive 

technique that registers signals originating from the firing of neurons 
in the brain. The Emotiv EEG Neuroheadset is a consumer product 
comprised of 14 EEG channels and was used to record the reactions 
of the neurons within the brain to two forms of stimuli in 10 
participants. These stimuli consisted of auditory and visual formats 
that provided directions of ‘right’ or ‘left.’ Participants were 
instructed to raise their right or left arm in accordance with the 
instruction given. A scenario in OpenViBE was generated to both 
stimulate the participants while recording their data. In OpenViBE, 
the Graz Motor BCI Stimulator algorithm was configured to govern 
the duration and number of visual stimuli. Utilizing EEGLAB under 
the cross platform MATLAB®, the electrodes most stimulated during 
the study were defined. Data outputs from EEGLAB were analyzed 
using IBM SPSS Statistics® Version 20. This aided in determining 
the electrodes to use in the development of a brain-machine interface 
(BMI) using real-time EEG signals from the Emotiv EEG 
Neuroheadset. Signal processing and feature extraction were 
accomplished via the Simulink® signal processing toolbox. An 
Arduino™ Duemilanove microcontroller was used to link the Emotiv 
EEG Neuroheadset and the right and left Mecha TE™ Hands. 

 
Keywords—Brain-machine interface, EEGLAB, emotiv EEG 

neuroheadset, openViBE, simulink. 

I. INTRODUCTION 

RAIN-COMPUTER Interfaces (BCIs) are a relatively 
new technology in the diagnosis and treatment of 

conditions in numerous healthcare settings [1]. 
BCIs have applications for both rehabilitation and gaming. 

BCIs are capable of allowing an individual to interact with 
their external world based on specific thoughts recognized by 
a computer as a recognizable pattern occurring within the 
brain. Individuals simply think of an action to be fulfilled by 
an external device, such as a prosthesis, wheelchair or 
helicopter drone. These thoughts have specific neural patterns 
that are recorded or enacted in real time using scalp electrodes 
whose signal(s) are relayed to a computer on which algorithms 
are generated that are responsible for initiating that action by 
the external entity. To produce a continuous linkage between 
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thought and action requires extensive iterations in neural 
training and modification of the software algorithms to the 
user so that it can properly carry out its facilitating role [6]-
[8]. Although some BCI technologies are currently available, 
research into how to standardize the system across users and 
stabilize the software is still in its primitive stages [2].  

The initial purpose behind this neuroscience study was to 
determine whether an auditory or visual stimulus is more 
effective when training a brain-computer interface. In this case 
simple ‘right’ and ‘left’ directions were generated using the 
freeware program OpenViBE. Also, the study sought to 
determine which of the 14 electrodes on the Emotiv EEG 
Neuroheadset were most effective in the creation of a BCI. 
Based on these findings it should be possible to determine 
which frequencies and electrode locations should be isolated 
and filtered and processed in order to use the Emotiv EEG 
Neuroheadset most effectively as a brain-machine interface 
(BMI). BMI development will consist of using the Emotiv 
EEG Headset, Simulink® a MATLAB® toolbox and an 
Arduino™ Duemilanove microcontroller to establish 
connection and control to two Mecha TE™ Hands. 
Controlling the left and right Mecha TE™ Hands in real time 
via EEG is a proof-of-concept to successfully regulating a 
prosthesis or wheelchair movement for individuals with 
compromised motor systems [5]. 

II. METHODS 

This BMI project has been separated into four parts; Emotiv 
EEG Neuroheadset and OpenViBE, Neuroscience Study 
Procedure, EEGLAB analysis and brain-machine interface 
setup. 

A. Emotiv EEG Neuroheadset and OpenViBE 

The 14 active sensors of the Emotiv EEG Headset™ were 
soaked with 6 drops of saline solution prior to being placed in 
the headset. The Emotiv Neuroheadset is of the wet sensor 
type that reduces the amount of artifacts in the data [3], and 
the sensor locations on the EEG Neuroheadset follow the 10-
20 international system [4]. Emotiv EEG Neuroheadset setup 
software was used to ensure adequate connection during each 
trial. Recording of the Emotiv EEG signals was attained 
wirelessly using OpenViBE, a freeware designed to stimulate 
the subject in both visual and auditory formats, record EEG 
and display EEG signal output in real time. 
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Fig. 2 EEG scroll data from female subject 2 
 

 

Fig. 3 EEG scroll data from male subject 2 
 

 

Fig. 4 Frequency vs. time channel F4 for female subject 5 

B. Neuroscience Statistical Analysis 

The data for the graphed output from the 10 participants 
were analyzed using IBM SPSS Statistics® Version 20. Four 
sets of analyses were run using, as the dependent variable, the 
distribution: 1) means, 2) trimmed means, 3) standard 
deviations, and 4) trimmed standard deviations two of these 
outputs used from EEGLAB are shown in Figs. 6 and 7. 
(Trimmed statistics are based on the removal of the top and 

bottom 5% of the points on the distribution, a configuration 
decided on and then implemented by EEGLAB.)  

 

 

Fig. 5 Frequency vs. time channel FC5 male subject 1 
 
For each of the four analyses a mixed model analysis of 

variance (ANOVA) was conducted. The variables included 
gender (2 levels – female and male), channel (4 levels – F3, 
FC5, FC6, and F4) and sensory modality used (2 levels -
auditory and visual).  

Analysis of Means - The analysis of means resulted in one 
significant interaction effect; gender by channel (F (3,24) = 
3.300, p = .037). After collapsing across sensory modality 
independent samples, t-tests showed that the interaction 
occurred at two channels. Females had a lower mean (-.0026) 
than males (.0013) on Channel FC5 (t(8) = -2.884, p = .020). 
Females had a higher mean (.0000) than males (-.0033) on 
Channel F4 (t(8) = 2.339, p = .047). 

Analysis of Trimmed Means - The analysis of trimmed 
means resulted in no significant effects 

Analysis of Standard Deviations - The analysis of standard 
deviations resulted in a significant main effect of channel (F 
(3,24) = 10.066, p = .004). After collapsing across gender and 
sensory modality, Bonferonni-corrected follow-up tests 
revealed that channel F4 had a more narrow distribution 
(130.8) than did channel FC5 (147.1) (t (18) = 16.371, p = 
.006). 

Analysis of Trimmed Standard Deviations - The analysis of 
trimmed standard deviations also resulted in a significant main 
effect of channel (F (3,24) = 6.868, p = .002). After collapsing 
across gender and sensory modality, Bonferonni-corrected 
follow-up tests revealed that channel F4 had a more narrow 
distribution (20.9) than did channels F3 (27.9) (t(18) = 6.984, 
p = .015) and FC6 (26.7) (t(18) = 5.799, p = .028).  

No other systematic statistical differences based on 1) 
gender, 2) modality, or 3) channels were observed. 
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Fig. 6 Statistics output for channel F4 female subject 4

Fig. 7 Statistics output for channel F4 male subject 1 
 

C. Brain-Machine Interface in Real-Time 

Fig. 8 highlights the steps involved in the development of a 
BMI. The electrodes chosen in order to control the Mecha 
TE™ Hands were determined from the neuroscience study. 
Using these four signals originating from the Emotiv EEG 
Neuroheadset were relayed to Simulink® via an EPOC™ 
Simulink® EEG Importer. Signals were then separated, filtered 
and amplified. A decision-making algorithm was responsible 
for designating which hand was controlled.  

IV. DISCUSSION 

The electrodes most important during audio and visual 
stimulation were determined to be F3, F4, FC5, and FC6. 
These sensors are all located along the motor cortex area of 
the brain. Accuracy can be improved when recording EEG 
signals by using a headset with additional sensors, and 

providing resistance to artifacts, thus giving a more 
comprehensive EEG pattern. The statistical analysis showed 
no statistical significance between auditory and visual 
stimulation in initiating a response in the motor cortex. 
However, it showed a relationship between sex and electrode 
location. There was found to be a statistical significance 
between females and F4 (electrode over the right portion of 
the brain), and between males and FC5 (electrode over the left 
portion of the brain). This may be the result of a connection 
between males tending to use more left-brain and females 
more right-brained [9]. 
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Fig. 8 BMI flowchart 

V. CONCLUSION 

Based on the results acquired by completion and analysis of 
the neuroscience data, it was determined that the main 
electrodes stimulated when paired with a motor task were F3, 
FC5, FC6 and F4, as per the 10-20 international system. These 
results lead to the development of a successful BMI capable of 
controlling both left and right Mecha TE™ Hands. This BMI 
can be adjusted to the users’ need and preferences. Future 
work requires more exploration into the effects of sex and 
channel location, as well as work into making the BMI system 
more robust and stable. 
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