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Abstract—Electroencephalogram (EEG) is a noninvasive
technique that registers signals originating from the firing of neurons
in the brain. The Emotiv EEG Neuroheadset is a consumer product
comprised of 14 EEG channels and was used to record the reactions
of the neurons within the brain to two forms of stimuli in 10
participants. These stimuli consisted of auditory and visual formats
that provided directions of ‘right’ or ‘left.” Participants were
instructed to raise their right or left arm in accordance with the
instruction given. A scenario in OpenViBE was generated to both
stimulate the participants while recording their data. In OpenViBE,
the Graz Motor BCI Stimulator algorithm was configured to govern
the duration and number of visual stimuli. Utilizing EEGLAB under
the cross platform MATLAB?®, the electrodes most stimulated during
the study were defined. Data outputs from EEGLAB were analyzed
using IBM SPSS Statistics® Version 20. This aided in determining
the electrodes to use in the development of a brain-machine interface
(BMI) using real-time EEG signals from the Emotiv EEG
Neuroheadset. Signal processing and feature extraction were
accomplished via the Simulink® signal processing toolbox. An
Arduino™ Duemilanove microcontroller was used to link the Emotiv
EEG Neuroheadset and the right and left Mecha TE™ Hands.

Keywords—Brain-machine interface, EEGLAB, emotiv EEG
neuroheadset, openViBE, simulink.

I. INTRODUCTION

RAIN-COMPUTER Interfaces (BCls) are a relatively
new technology in the diagnosis and treatment of
conditions in numerous healthcare settings [1].

BCls have applications for both rehabilitation and gaming.
BCls are capable of allowing an individual to interact with
their external world based on specific thoughts recognized by
a computer as a recognizable pattern occurring within the
brain. Individuals simply think of an action to be fulfilled by
an external device, such as a prosthesis, wheelchair or
helicopter drone. These thoughts have specific neural patterns
that are recorded or enacted in real time using scalp electrodes
whose signal(s) are relayed to a computer on which algorithms
are generated that are responsible for initiating that action by
the external entity. To produce a continuous linkage between
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thought and action requires extensive iterations in neural
training and modification of the software algorithms to the
user so that it can properly carry out its facilitating role [6]-
[8]. Although some BCI technologies are currently available,
research into how to standardize the system across users and
stabilize the software is still in its primitive stages [2].

The initial purpose behind this neuroscience study was to
determine whether an auditory or visual stimulus is more
effective when training a brain-computer interface. In this case
simple ‘right’ and ‘left’ directions were generated using the
freeware program OpenViBE. Also, the study sought to
determine which of the 14 electrodes on the Emotiv EEG
Neuroheadset were most effective in the creation of a BCI.
Based on these findings it should be possible to determine
which frequencies and electrode locations should be isolated
and filtered and processed in order to use the Emotiv EEG
Neuroheadset most effectively as a brain-machine interface
(BMI). BMI development will consist of using the Emotiv
EEG Headset, Simulink® a MATLAB® toolbox and an
Arduino™  Duemilanove microcontroller to establish
connection and control to two Mecha TE™ Hands.
Controlling the left and right Mecha TE™ Hands in real time
via EEG is a proof-of-concept to successfully regulating a
prosthesis or wheelchair movement for individuals with
compromised motor systems [5].

Il. METHODS

This BMI project has been separated into four parts; Emotiv
EEG Neuroheadset and OpenViBE, Neuroscience Study
Procedure, EEGLAB analysis and brain-machine interface
setup.

A. Emotiv EEG Neuroheadset and OpenViBE

The 14 active sensors of the Emotiv EEG Headset™ were
soaked with 6 drops of saline solution prior to being placed in
the headset. The Emotiv Neuroheadset is of the wet sensor
type that reduces the amount of artifacts in the data [3], and
the sensor locations on the EEG Neuroheadset follow the 10-
20 international system [4]. Emotiv EEG Neuroheadset setup
software was used to ensure adequate connection during each
trial. Recording of the Emotiv EEG signals was attained
wirelessly using OpenViBE, a freeware designed to stimulate
the subject in both visual and auditory formats, record EEG
and display EEG signal output in real time.
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B. Neuroscience Study Procedure

This study was approved by Indiana Tech’s Institutional
Review Board. Ten (five male and five female) subjects
between the ages of 21 and 24 years participated in the study,
all of whom read and signed the informed consent form.
Participants had the Emotiv EEG Neuroheadset placed on
their head and were seated in front of a computer screen in a
dimly lit office. It was positioned to ensure that the ‘ground’
sensors were located over the temporal bone of the skull
(directly behind the ear) and that the front-most sensors were
located three finger widths above the eyebrow. The Emotiv®
software Headset Setup ensured the connection between each
sensor and the individual’s scalp prior to beginning the study,
while the OpenVIBE acquisition server allowed connection
between the headset and the OpenViBE scenario.

Fig. 1 OpenVIiBE Graz Motor Visual Stimulations

Participants were asked to remain as still as possible during
the experiment to lessen the effect of interference from muscle
signals during the EEG recording. The Graz Motor
Stimulation in OpenVIiBE generated 20 right arrows and 20
left arrows presented in a random order on the computer
screen as seen in Fig. 1 to act as visual stimuli. They were
directed to raise their right arm when a right arrow appeared
and to do the same with their left arm when a left arrow
appeared. After a short break, participants were asked to
respond to auditory (i.e., 20 ‘right and 20 ‘left”) stimuli
presented again in a random order by the computer. The
participants were again asked to raise their right arm during a
‘right” stimulation and raise their left arm during a ‘left’
stimulation. Data collection for each of the visual and auditory
portions lasted approximately eight minutes with
approximately 10-seconds between each stimulus. Each
testing session took approximately 35 minutes. All recordings
were then saved in the European Data File (.EDF) format.

C.EEGLAB Analysis

Data sets were brought into and analyzed in EEGLAB a
toolbox that runs under the cross platform MATLAB®. Each
subject’s audio and visual .EDF files were processed
separately by first reading in the electrode locations, removing
the baseline and running an Independent Component Analysis
(ICA). The raw data could be viewed by selecting to view
EEG scroll data within EEGLAB. When generating the
frequency time domain outputs from the channels, a Fast
Fourier Transform (FFT) using (1) was performed. X (k) and x
(n) are output and input signals respectively, N is the number
of points for FFT and k is the index number.

2m

X(k) = V=1 xm). e =01, N=1) (1)

Outputs such as the one seen in Figs. 2-7 were generated.
The implications of such outputs are noted in the results
section.

D.Brain-Machine Interface Setup

The incoming EEG signals from the Emotiv EEG
Neuroheadset were relayed to Simulink® utilizing the
EPOC™ Simulink® EEG Importer. Once this connection was
established a demultiplexer was used to separate the incoming
EEG signals into 14 separate signals. Signal processing was
performed on specific channels, determined from the prior
neuroscience study, for feature extraction. This consisted of
filtering, noise removal, and the control algorithm. Multiple
scope boxes were employed to view the EEG output at each
stage in the scenario.

An Arduino™ Duemilanove 8-bit microcontroller was used
to establish communication between the designed Simulink®
model and two Mecha TE™ Hands, a left and right. EEG
control algorithms were developed to regulate left and right
Mecha TE™ Hands in real-time through Pulse-Width
Modulation (PWM) signals.

Two Mecha TE™ Hands are used in the BMI development.
Each hand features 5 Futaba® S3114 Micro Servos (one for
each of the 5 fingers), and the maximum voltage use is 5 volts
direct current (DC).

I1l. RESULTS

The results were divided into 3 sections; neuroscience study
results, neuroscience statistical analysis, and brain-machine
interface in real time.

A. Neuroscience Study Results

EEG scroll data for channels F3, FC5, F4 and FC6
according to the 10-20 International System, for all data sets
were generated using EEGLAB. Based on the EEG scroll data
outputs in EEGLAB, it was clear that the sensors most
important during audio and visual stimulation (because they
displayed the largest change in amplitude) are F3, F4, FC5,
and FC6. All four of which are located over the sensorimotor
cortex. There were also peaks in the four most frontal
electrodes (F7, AF3, F6, AF4) however these electrodes are
the most susceptible to facial muscle signals and were most
likely the result of this interference. Figs. 2 and 3 demonstrate
this occurrence in both a female and male data set.

Also, as noted prior, a FFT was employed to generate
frequency vs. time outputs. These can be seen in Figs. 4 and 5
below. These images demonstrate that as frequency goes
above 30 Hz that the power generated starts to taper off. This
would be in accordance with the alpha and beta waveforms
that range from approximately 8-12 Hz in the case of alpha
and 12-28 for beta.
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Fig. 3 EEG scroll data from male subject 2

Fa

ERSP(dB)
40

Frequency (Hz
roow
S &

=)

05 1 15 2 25 3 35 4 45
Time (ms) 5
0 ITC phase
5

Now e
S S o

Frequency (Hz)

o

|
05 1 15 2 25 3 35 4 45
Time (ms) % 10°

Fig. 4 Frequency vs. time channel F4 for female subject 5

B. Neuroscience Statistical Analysis

The data for the graphed output from the 10 participants
were analyzed using IBM SPSS Statistics® Version 20. Four
sets of analyses were run using, as the dependent variable, the
distribution: 1) means, 2) trimmed means, 3) standard
deviations, and 4) trimmed standard deviations two of these
outputs used from EEGLAB are shown in Figs. 6 and 7.
(Trimmed statistics are based on the removal of the top and

bottom 5% of the points on the distribution, a configuration
decided on and then implemented by EEGLAB.)
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Fig. 5 Frequency vs. time channel FC5 male subject 1

For each of the four analyses a mixed model analysis of
variance (ANOVA) was conducted. The variables included
gender (2 levels — female and male), channel (4 levels — F3,
FC5, FC6, and F4) and sensory modality used (2 levels -
auditory and visual).

Analysis of Means - The analysis of means resulted in one
significant interaction effect; gender by channel (F (3,24) =
3.300, p = .037). After collapsing across sensory modality
independent samples, t-tests showed that the interaction
occurred at two channels. Females had a lower mean (-.0026)
than males (.0013) on Channel FC5 (t(8) = -2.884, p = .020).
Females had a higher mean (.0000) than males (-.0033) on
Channel F4 (t(8) = 2.339, p =.047).

Analysis of Trimmed Means - The analysis of trimmed
means resulted in no significant effects

Analysis of Standard Deviations - The analysis of standard
deviations resulted in a significant main effect of channel (F
(3,24) = 10.066, p = .004). After collapsing across gender and
sensory modality, Bonferonni-corrected follow-up tests
revealed that channel F4 had a more narrow distribution
(130.8) than did channel FC5 (147.1) (t (18) = 16.371, p =
.006).

Analysis of Trimmed Standard Deviations - The analysis of
trimmed standard deviations also resulted in a significant main
effect of channel (F (3,24) = 6.868, p = .002). After collapsing
across gender and sensory modality, Bonferonni-corrected
follow-up tests revealed that channel F4 had a more narrow
distribution (20.9) than did channels F3 (27.9) (t(18) = 6.984,
p =.015) and FC6 (26.7) (t(18) = 5.799, p = .028).

No other systematic statistical differences based on 1)
gender, 2) modality, or 3) channels were observed.
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Fig. 6 Statistics output for channel F4 female subject 4
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Fig. 7 Statistics output for channel F4 male subject 1

C.Brain-Machine Interface in Real-Time

Fig. 8 highlights the steps involved in the development of a
BMI. The electrodes chosen in order to control the Mecha
TE™ Hands were determined from the neuroscience study.
Using these four signals originating from the Emotiv EEG
Neuroheadset were relayed to Simulink® via an EPOC™
Simulink® EEG Importer. Signals were then separated, filtered
and amplified. A decision-making algorithm was responsible
for designating which hand was controlled.

IV. DISCUSSION

The electrodes most important during audio and visual
stimulation were determined to be F3, F4, FC5, and FC6.
These sensors are all located along the motor cortex area of
the brain. Accuracy can be improved when recording EEG
signals by using a headset with additional sensors, and

providing resistance to artifacts, thus giving a more
comprehensive EEG pattern. The statistical analysis showed
no statistical significance between auditory and visual
stimulation in initiating a response in the motor cortex.
However, it showed a relationship between sex and electrode
location. There was found to be a statistical significance
between females and F4 (electrode over the right portion of
the brain), and between males and FC5 (electrode over the left
portion of the brain). This may be the result of a connection
between males tending to use more left-brain and females
more right-brained [9].
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Fig. 8 BMI flowchart

V.CONCLUSION

Based on the results acquired by completion and analysis of
the neuroscience data, it was determined that the main
electrodes stimulated when paired with a motor task were F3,
FC5, FC6 and F4, as per the 10-20 international system. These
results lead to the development of a successful BMI capable of
controlling both left and right Mecha TE™ Hands. This BMI
can be adjusted to the users’ need and preferences. Future
work requires more exploration into the effects of sex and
channel location, as well as work into making the BMI system
more robust and stable.
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