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 
Abstract—Development of a method to estimate gene functions is 

an important task in bioinformatics. One of the approaches for the 
annotation is the identification of the metabolic pathway that genes are 
involved in. Since gene expression data reflect various intracellular 
phenomena, those data are considered to be related with genes’ 
functions. However, it has been difficult to estimate the gene function 
with high accuracy. It is considered that the low accuracy of the 
estimation is caused by the difficulty of accurately measuring a gene 
expression. Even though they are measured under the same condition, 
the gene expressions will vary usually. In this study, we proposed a 
feature extraction method focusing on the variability of gene 
expressions to estimate the genes' metabolic pathway accurately. First, 
we estimated the distribution of each gene expression from replicate 
data. Next, we calculated the similarity between all gene pairs by KL 
divergence, which is a method for calculating the similarity between 
distributions. Finally, we utilized the similarity vectors as feature 
vectors and trained the multiclass SVM for identifying the genes' 
metabolic pathway. To evaluate our developed method, we applied the 
method to budding yeast and trained the multiclass SVM for 
identifying the seven metabolic pathways. As a result, the accuracy 
that calculated by our developed method was higher than the one that 
calculated from the raw gene expression data. Thus, our developed 
method combined with KL divergence is useful for identifying the 
genes' metabolic pathway. 
 

Keywords—Metabolic pathways, gene expression data, 
microarray, Kullback–Leibler divergence, KL divergence, support 
vector machines, SVM, machine learning. 

I. INTRODUCTION 

OR understanding life system, it is important to identify the 
genes that are involved in metabolic pathways. Because 

gene expression data reflect various intracellular phenomena, 
gene expression data are useful for revealing the genes that are 
involved in metabolic pathways. 

The Pearson product-moment correlation coefficient has 
been utilized to gene expression data for revealing the relevant 
genes [1]-[3]. The method is based on the idea that 
co-expression genes have similar function. However, the 
Pearson product-moment correlation coefficient can express 
only linear relationship between genes. Thus, we cannot utilize 
the method to infer the relevant genes that have non-linear 
relationship with other relevant genes. 

Support vector machines (SVMs) [4], [5] are useful to treat 
this problem. SVMs are a supervised machine learning method 
for classification. SVMs can treat non-linear relationships 
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between genes by the kernel trick. Brown et al. [6] utilized 
SVMs with gene expression data to recognize six functional 
classes of genes: tricarboxylic acid (TCA) cycle, respiration, 
cytoplasmic ribosomes, proteasome, histones, and 
helix-turn-helix proteins. They compared the classification 
performances of the SVMs with those of four machine learning 
algorithms (Parzen windows, Fisher’s linear discriminant, 
C4.5, and MOC1), and showed that the SVMs achieved the best 
classification performance among them. 

Brown et al. [6] applied raw gene expression data to SVMs. 
However, typical gene expression data includes the replicates 
for estimation of the variability associated with gene 
expressions. Thus, it is considered that gene expression data 
have to be applied to SVMs with the method reflecting the 
variability associated with gene expressions. 

In this report, we propose a method based on the SVM 
approach, for identifying the genes’ metabolic pathways from 
the gene expression data. To reflect the variability of gene 
expressions, we calculated the similarities between genes by 
KL divergence, and utilized the similarities as the feature 
vectors of SVMs. Then, we applied our developed method to 
the gene expression data of Saccharomyces cerevisiae against 
seven metabolic pathways defined by KEGG, and evaluated 
their classification performances. 

II. METHODS 

To estimate the genes' metabolic pathway accurately by 
reflecting the variability of gene expressions, first, we 
estimated the distribution of each gene expression from 
replicate data. Next, we calculated the similarity between all 
gene pairs by KL divergence, which is a method for calculating 
the similarity between distributions. Finally, we utilized the 
similarity vectors as feature vectors and trained the multiclass 
SVM for identifying the genes' metabolic pathway. 

A. Estimation of Distribution of Gene Expression 

To reflect the variability of gene expressions, we estimated 
the distribution of the gene profiles. We assumed that 
1. The distribution of each gene profile follows multivariate 

normal distribution. 
2. Experiments are statistically independent. 

Because of the independence of experiments, the covariance 
matrix of the multivariate normal distribution can be written by 
only the variance of each experiment. The mean and the 
variance, which are the parameters of the multivariate normal 
distribution, were estimated by calculating the mean and the 
unbiased variance from the replicates of each experiment. 
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B. Kullback-Leibker Divergence (KL divergence) 

The KL divergence [7] is a measure of the difference 
between two probability distributions. To calculate the 
similarities between genes reflecting the variability of gene 
expressions, we utilized the KL divergence. 

For genes A and B, KL divergence is defined to be 
 

ሻܤ‖ܣ୏୐ሺܦ ൌ න ሻܠ஺ሺ݌ ln
ሻܠ஺ሺ݌

ሻܠ஻ሺ݌
ܠ݀

ஶ

ିஶ

, (1)

 
where ܠ is a gene profile, and ݌஺  and ݌஻  are the probability 
density functions of each gene’s profile. 

We calculated the similarities between all gene pairs and 
created the similarity matrix, whose rows mean gene A and 
columns mean gene B. Then, we utilized the similarity vectors, 
which are the rows of the similarity matrix, as the feature 
vectors of the SVM classifiers. 

C. Support Vector Machines (SVM) 

To infer whether a gene is involved in a certain metabolic 
pathway, we trained the SVM classifiers from the similarity 
vectors, where the similarity vectors were mapped to a higher 
dimension space by the kernel trick. We define the positive 
genes as the genes that are involved in the certain pathway, and 
the negative genes as the genes that are not involved in a certain 
pathway. Given a similarity vector ܠ  of a certain gene, the 
SVM method constructs the model as follows:  

 

ቊ
ሻܠ୘߶ሺܟ ൅ ܾ ൐ 0, The	gene	is	positive.

ሻܠ୘߶ሺܟ ൅ ܾ ൏ 0, The	gene	is	negative.
, (2)

 
where ܟ is the vector of coefficients, ܾ is a bias parameter and 
߶ሺܠሻ denotes a feature-space transformation. 

Let us suppose that we have a training data set, which 
consists of ܰ  similarity vectors ܠଵ ேܠ ,…,  with the 
corresponding target values ݐଵ ேݐ ,… , , where ݐ௡  is ൅1 when 
the gene ݊  is positive and ݐ௡  is െ1  when the gene ݊  is 
negative. The training algorithm of the soft margin SVMs [4] 
solves the optimization problem 

 

arg	min
௕,ࣈ,ܟ

൝
1

2
ଶ‖ܟ‖ ൅ ෍ܥ ௡ߦ

ே

௡ୀ଴

ൡ (3)

 
subject to 
 

ܟ௡ሺݐ
୘߶ሺܠ௡ሻ ൅ ܾሻ ൒ 1 െ ௡ߦ ,௡ߦ ൐ 0,  ݊ ൌ 1,… ,ܰ. (4)

 
where ܥ is a constant that controls the error penalties. 

The optimization problem (2) can be expressed only in terms 
of a kernel function ݇ሺܠ௡, ௠ሻܠ ൌ ߶ሺܠ௡ሻ

்߶ሺܠ௠ሻ . Thus, we 
implicitly mapped the similarity vectors to a higher dimension 
space by the kernel function.  

We utilized the radial basis function (RBF) kernel for SVMs. 
The RBF kernel is defined as 

 

݇ሺܠ௠, ௡ሻܠ ൌ expሺെܠ‖ߛ௠ െ ‖௡ܠ
ଶሻ , ߛ  ൐ 0. (5)

 
where ܠ௠ and ܠ௡ are the similarity vectors. 

To solve the problem of multiclass classification by SVM, 
we utilized a one versus one classifier. One versus one classifier 
constructs one classifier per pair of pathways. At prediction 
time, the pathway that received the most votes is selected. 

III. EXPERIMENTAL DESIGN 

To evaluate our developed method, we applied the method to 
Saccharomyces cerevisiae and trained the multiclass SVM for 
identifying the seven metabolic pathways.  

A. Gene expression data 

We compiled the profiles of 4,783 Saccharomyces cerevisiae 
genes, which were measured in 4,214 experiments by 
Affymetrix arrays. They were downloaded as raw CEL files 
from the Gene Expression Omnibus (GEO) database [8]. The 
raw CEL files were processed by MAS5.0 [9], [10]. Each 
experiment was normalized with mean 0 and variance 1. 

B. Metabolic Pathways 

We utilized seven metabolic pathways which are classified at 
the KEGG PATHWAY database [11]. Both of “Amino acid 
metabolism” and “Metabolism of other amino acids” are the 
pathways that are related amino acids. Thus, we merged the two 
pathways as one “Amino acid metabolisms”. Table I shows the 
list of metabolic pathways and the number of genes that are 
involved in each metabolic pathway. 

 
TABLE I 

LIST OF METABOLIC PATHWAYS AND THE NUMBER OF GENES INVOLVED IN 

EACH PATHWAY 
Metabolic pathway # of genes 

Carbohydrate metabolism (Crb.) 213 

Energy metabolism (Enr.) 106 

Lipid metabolism (Lpd.) 117 

Nucleotide metabolism (Ncl.) 116 

Amino acid metabolism (Amn.) 188 

Glycan biosynthesis and metabolism (Gly.) 76 

Metabolism of cofactors and vitamins (Vtm.) 110 

C. Evaluation Measure 

To evaluate the classification performances of the binary 
classifiers, which compose the one versus one classifiers for 
identification of the genes' metabolic pathway, we utilized 
accuracy. Similarly, to evaluate the classification performances 
of the multiclass classifier, we utilized recall. Accuracy and 
recall are defined as 

 

accuracy ൌ
ሺrelevant	genesሻ ∩ ሺretrieved	genesሻ

ሺall	genesሻ
, (6)

recall ൌ
ሺrelevant	genesሻ ∩ ሺretrieved	genesሻ

ሺrelevant	genesሻ
, (7)

 
where the relevant genes are the genes that are involved in a 
certain pathway, and the retrieved genes are the genes that are 
identified as the genes that involved in the pathway. 
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(a) 

(b) 

Fig. 1 Accuracies of the binary classifiers that compose the one 
versus one classifier for identification of the genes’ metabolic 

pathway (a) the accuracies with the raw gene expression data (b) the 
accuracies with the similarities that are calculated by KL divergence 

(our method). The vertical axis means the mean of accuracies of 
10-fold cross validation. The horizontal axis means the pair of 

metabolic pathway that each binary classifier identifies. The error 
bar means the range of ሺmeanሻ േ ሺstandard	deviationሻ 

IV. RESULTS 

A. Classification Performances of Binary Classifiers 

In Fig. 1, we show the accuracies of the binary classifiers, 
which compose the one versus one classifiers for identification 
of the genes' metabolic pathway. Fig. 1 (a) shows the accuracies 
with the raw gene expression data, and Fig 1 (b) shows the 
accuracies with the similarities that are calculated by KL 
divergence. When we trained SVMs using the raw gene 
expression data, the accuracies of the SVMs are around 70%. 
The best classifier in (a) is the pair of “Carbohydrate 
metabolism” and “Glycan biosynthesis and metabolism”, 
whose accuracy is 86.61%. The worst classifier in (a) is the pair 
of “Carbohydrate metabolism” and “Energy metabolism”, 
whose accuracy is 64.20%.  

On the other hand, when we trained SVMs using the 
similarities that are calculated by KL divergence, the accuracies 
of the SVMs are around 90%, except “Energy metabolism” 
versus “Lipid metabolism” and “Nucleotide metabolism” 
versus “Metabolism of cofactors and vitamins”. The best 
classifier in (b) is the pair of “Carbohydrate metabolism” and 
“Glycan biosynthesis and metabolism”, whose accuracy is 
95.98%. The worst classifier in (b) is the pair of “Nucleotide 
metabolism” and “Metabolism of cofactors and vitamins”, 
whose accuracy is 61.32%. 

B. Classification Performances of Multiclass Classifiers 

Fig. 2 shows the comparison of the recall of the one versus 
one classifier for identification of the genes’ metabolic 
pathway. In the entire metabolic pathway except “Energy 
metabolism”, the recall of each metabolic pathway was 
improved by using KL divergence. The most improved 
metabolic pathway is “Amino acid metabolism”, whose 
difference of recall is 50.30%. The worst improved metabolic 
pathway is “Nucleotide metabolism”, whose difference of 
recall is 3.61%. The recall of “Energy metabolism” was not 
improved; there is no difference between the recall with the raw 
gene expression data and that with the similarities that are 
calculated by KL divergence. 

The recalls of “Amino acid metabolism”, “Carbohydrate 
metabolism” and “Glycan biosynthesis and metabolism” are 
higher than 80%. On the other hand, the recall of “Energy 
metabolism”, “Lipid metabolism”, “Metabolism of cofactors 
and vitamins” and “Nucleotide metabolism” are lower than 
80%. Thus, the recalls of the four metabolic pathways are low 
compared to that of the others. 

C. Breakdown of Estimated Genes’ Metabolic Pathways 

Fig. 3 illustrates the breakdown of the metabolic pathways 
when we estimated the relevant metabolic pathways of the 
relevant genes of “Energy metabolism”. Fig. 3 (a) shows the 
breakdown with the raw gene expression data, and Fig. 3 (b) 
shows the breakdown with the similarities that are calculated by 
KL divergence. The ratio, which “Energy metabolism” genes 
are identified as “Energy metabolism” genes, is same between 
the raw gene expression data and the similarities calculated by 
KL divergence. 
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