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Abstract—The Cone Penetration Test (CPT) is a common in-situ 

test which generally investigates a much greater volume of soil more 
quickly than possible from sampling and laboratory tests. Therefore, 
it has the potential to realize both cost savings and assessment of soil 
properties rapidly and continuously. The principle objective of this 
paper is to demonstrate the feasibility and efficiency of using 
artificial neural networks (ANNs) to predict the soil angle of internal 
friction (Φ) and the soil modulus of elasticity (E) from CPT results 
considering the uncertainties and non-linearities of the soil. In 
addition, ANNs are used to study the influence of different 
parameters and recommend which parameters should be included as 
input parameters to improve the prediction. Neural networks discover 
relationships in the input data sets through the iterative presentation 
of the data and intrinsic mapping characteristics of neural topologies. 
General Regression Neural Network (GRNN) is one of the powerful 
neural network architectures which is utilized in this study. A large 
amount of field and experimental data including CPT results, plate 
load tests, direct shear box, grain size distribution and calculated data 
of overburden pressure was obtained from a large project in the 
United Arab Emirates. This data was used for the training and the 
validation of the neural network. A comparison was made between 
the obtained results from the ANN's approach, and some common 
traditional correlations that predict Φ and E from CPT results with 
respect to the actual results of the collected data. The results show 
that the ANN is a very powerful tool. Very good agreement was 
obtained between estimated results from ANN and actual measured 
results with comparison to other correlations available in the 
literature. The study recommends some easily available parameters 
that should be included in the estimation of the soil properties to 
improve the prediction models. It is shown that the use of friction 
ration in the estimation of Φ and the use of fines content in the 
estimation of E considerable improve the prediction models.  

 
Keywords—Angle of internal friction, Cone penetrating test, 

General regression neural network, Soil modulus of elasticity. 

I. INTRODUCTION 

HE Cone Penetration Test (CPT) is becoming 
progressively popular for its high ability to delineate 

stratigraphy of soil and assess soil properties rapidly and 
continuously. Many soil properties can be obtained from the 
CPT results including angle of internal friction, soil modulus 
of elasticity, seismic assessment, and relative density [1]-[5]. 
The current study focuses on the prediction of the angle of 
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internal friction (Φ) and the soil modulus of elasticity (E) from 
CPT results which are important in bearing capacity and 
settlement calculations. Over the years, many correlations 
were developed to estimate Φ and E from CPT results [1]-[4]. 

The correlations mostly considered the value of qc (cone 
penetration resistance) only which is obtained from CPT 
results. The study investigates the influence of other 
parameters on the correlations. These parameters are easily 
obtained from laboratory tests such as grain size distribution 
analysis or are readily available from CPT results such as Fr 
(Friction ratio defined as the ratio between the sleeve and tip 
resistanc). The current paper studies the feasibility and 
efficiency of using artificial neural networks (ANNs) to 
estimate the soil properties (Φ and E) from CPT results and to 
investigate which parameters should be included in the soil 
property estimation to improve the prediction models.  

Artificial neural networks have been intensively studied and 
applied to many geotechnical engineering problems [6]-[17]. 
It has been applied to estimate many soil and material 
properties [18], [19] and it proved to be a powerful tool that 
can have a superiority over other correlation techniques such 
as regression analysis [5], [20]-[24]. It has been shown that 
ANNs are capable of mapping nonlinear and complex 
relationships in nature. The neural network technology mimics 
the brain’s own problem-solving process. An ANN is 
composed of a large number of connected neurons which act 
like simple processors. Generally, ANNs offer viable solutions 
when a large volume of data is available for training. When a 
problem is complex or difficult to formulate analytically, a 
neural network solution could be appropriate to use.  

A large amount of field and experimental data including 
CPT results, plate load tests, direct shear box, grain size 
distribution was obtained, filtered and processed from a large-
scale project that covers the United Arab Emirates (UAE). The 
soil in UAE is mostly cohessionless soil and the country is 
witnessing a lot of development and many construction 
projects. It is believed that developed soil relations that can be 
applied to such active areas in construction would be of 
benefit to engineers in this area specifically and to 
geotechnical engineers in general.  

The database used and the neural network modeling are first 
presented. For estimating both Φ and E, different ANN 
models are then developed with different input parameters to 
study the influence of the input parameters on the ANN 
models. The predictions from ANN are compared to 
predictions from other correlations available in the literature. 
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C. Comparison between Neural Networks and a Set of 
Traditional Methods 

Table II shows some of the correlations used for estimation 
of Φ from CPT results available in the literature. The table 
includes the values of r2 calculated by comparing the actual Φ 
(measured from shear box test) and the predicted Φ values 
from the correlations. When applying the available data it is 
clear that the available correlations in the literature poorly 
predict Φ. This might be attributed to not including the value 
of Fr in the estimation of Φ in the literature correlations.  
 

 

Fig. 3 Comparison between predicted and measured tan (Φ) from 
CPT results with r2% coefficient 

 
TABLE I 

THE USED DATA FOR ESTIMATION OF Φ (GRNN7) 

Index 
qc Fr 

Effective
pressure Measured 

tan(ϕ) 

Predicted 
tan(ϕ) 

(GRNN7) Mpa % KN 
1 45.110 1.160 29 0.8687 0.8687 
2 44.150 1.250 38 0.8092 0.8092 
3 37.500 0.630 51 0.7530 0.7530 
4 36.900 0.190 73 0.7530 0.6997 
5 46.900 0.400 45 0.7530 0.7530 
6 34.250 0.271 81 0.7530 0.7530 
7 42.500 0.350 58 0.7530 0.7530 
8 36.950 0.360 58 0.7261 0.7261 
9 38.400 0.349 43.5 0.7261 0.7530 

10 24.150 0.560 59.2 0.6997 0.6997 
11 13.300 0.400 66 0.6997 0.6997 
12 34.350 0.175 76 0.6997 0.6984 
13 25.350 0.460 35 0.6741 0.6741 
14 22.250 0.575 29 0.6741 0.6284 
15 13.900 1.032 77 0.6741 0.6741 
16 33.400 0.540 65 0.6741 0.6741 
17 12.070 0.360 28 0.6490 0.6489 
18 20.500 0.560 29 0.6490 0.6468 
19 2.330 0.477 34.5 0.6490 0.6490 
20 48.100 0.440 57.5 0.6245 0.6245 
21 40.310 0.154 29 0.6245 0.6005 
22 22.500 0.430 29 0.6245 0.6221 
23 35.820 0.504 52 0.6245 0.6245 
24 28.120 0.060 22.5 0.6245 0.6245 
25 13.950 0.420 43.5 0.6245 0.6245 
26 27.627 0.522 43 0.6245 0.6179 
27 45.100 0.410 28 0.6005 0.6005 

Index 
qc Fr 

Effective 
pressure Measured 

tan(ϕ) 

Predicted 
tan(ϕ) 

(GRNN7) Mpa % KN 
28 11.610 0.777 26 0.6005 0.6005 
29 33.820 0.520 76 0.6005 0.6018 
30 11.900 0.316 43.5 0.6005 0.6245 
31 24.770 0.430 25 0.6005 0.6005 
32 13.120 0.420 25.5 0.6005 0.6003 
33 32.000 0.065 55 0.6005 0.6005 
34 30.700 0.680 44.5 0.6005 0.5314 
35 35.700 0.430 28.5 0.6005 0.6005 
36 31.000 0.360 33 0.6005 0.5770 
37 22.500 0.320 68 0.6005 0.6005 
38 16.500 0.590 29 0.6005 0.5565 
39 6.820 1.230 40.5 0.6005 0.6005 
40 14.000 1.000 29.5 0.6005 0.6005 
41 22.840 0.570 29.5 0.5770 0.6042 
42 22.600 0.280 52 0.5770 0.5770 
43 14.200 0.360 24 0.5770 0.5773 
44 9.300 0.440 32 0.5770 0.5770 
45 14.950 0.730 50 0.5770 0.5770 
46 27.460 0.290 43.5 0.5770 0.5834 
47 16.450 0.360 27 0.5770 0.5769 
48 22.060 0.550 30 0.5770 0.6079 
49 13.250 0.434 30.5 0.5770 0.5770 
50 26.100 0.652 62 0.5770 0.5770 
51 23.000 0.434 81 0.5770 0.5868 
52 8.600 0.270 36 0.5770 0.5770 
53 44.500 0.415 89 0.5770 0.5770 
54 24.028 0.531 42 0.5770 0.5770 
55 29.000 0.380 41 0.5770 0.5770 
56 9.500 0.900 27 0.5770 0.5740 
57 10.000 0.730 29 0.5770 0.5756 
58 5.830 0.800 42 0.5540 0.5986 
59 5.500 0.500 33 0.5540 0.5314 
60 10.410 0.300 35 0.5540 0.5536 
61 4.370 0.240 14.85 0.5540 0.5540 
62 19.400 0.500 28 0.5540 0.5493 
63 54.200 0.360 61 0.5540 0.6002 
64 29.250 0.520 60 0.5540 0.5540 
65 17.100 0.704 30 0.5540 0.5540 
66 4.500 1.100 39 0.5540 0.5540 
67 22.000 0.700 61 0.5540 0.5540 
68 12.000 0.900 21 0.5540 0.5540 
69 9.300 0.700 26 0.5540 0.5570 
70 10.000 0.720 37.3 0.5314 0.5314 
71 26.000 0.380 43 0.5314 0.5316 
72 31.000 0.380 43 0.5314 0.5314 
73 14.000 0.600 47.01 0.5314 0.5314 
74 6.500 0.950 36 0.5314 0.5314 
75 18.000 0.420 26 0.5314 0.5238 
76 29.000 0.380 47 0.5314 0.5314 
77 12.400 0.850 38 0.5314 0.5314 
78 16.500 0.850 45 0.5092 0.5441 
79 19.500 0.780 49 0.5092 0.5092 
80 9.500 0.950 48.07 0.5092 0.5092 
81 21.000 0.550 50 0.4874 0.5120 
82 18.440 0.500 27.5 0.4660 0.4793 

 
The comparison between the GRNN model developed 

(GRNN7) and the other correlations in the literature (Table II) 
are given in Fig. 5. The predicted values by the GRNN are in 
very good agreement with measured values compared to 
available correlations in the literature. Thus ANN is shown to 
be a powerful tool in the prediction of Φ and highlights the 
importance of inclusion of Fr, which is easily available from 
CPT test, in the estimation of Φ. 
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Fig. 4 The weight factors for the correlation between angle of internal 
friction and CPT results 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Comparison between actual (measured) and predicting (tanΦ) 
from CPT [3] 

 
TABLE II 

THE VARIABLES CORRELATIONS FOR PREDICTING (TANΦ) FROM CPT WITH 

(R2) [3] 
Researcher Correlation R2 

Robertson and 
Campanella (1983)  

1

2.68
	

	

0.29  0.094 

Mayne, (2006) 17.60 11	
∗

	

 0.091 

Kulhawy and Mayne 
(1990) 

0.90 0.38	
	

 0.11 

Ricceri et al. (2002) 0.38 0.27	
	

 0.092 

Lee et al. (2004)  	15.575 . 		 0.161 

DeBeer (1974)  ϕ 1.3 ∗ 45
2 	 0.095 

V. ESTIMATING E FROM CPT RESULTS  

A. Output/Input Variables of ANN Analysis 

For estimating E from CPT results, the CPT results, plate 
load tests and grain size analysis were used from the available 
date. The readings of the CPT test were filtered to be at the 
same elevation of the lab tests. A total of 55 data points were 
prepared. The parameters that were investigated as input 
parameters to be included in the GRNN models developed 
were qc, Fc, D50 and depth of water table below plate level 

(DWT). The depth of water was considered as 50m (influence 
ignored) for depths of water at level greater than twice the 
plate width B (B=60cm). The output of the GRNN models 
considered is E which was both measured (obtained from plate 
load test) and estimated by the GRNN models developed. 
Seven different GRNN models were developed with different 
input parameters to study the influence of the input parameters 
on the obtained E. To evaluate the efficiency of the GRNN 
models developed, r2 was used.  

B. Results of Neural Networks 

Fig. 6 shows the different GRNN models developed and the 
corresponding r2 obtained for each network. From Fig. 6, it is 
observed that Fc has a great influence on the prediction model 
after qc. This can be observed by comparing GRNN1 with 
GRNN3 where the value of r2 is almost tripled by including 
Fc. Also the values of r2 increase significantly in the models 
that include Fc as an input (GRNN3, GRNN4, GRNN6, 
GRNN7). 

GRNN1 includes only the input parameter commonly used 
in correlations in the literature which is qc. The combination 
of inputs in GRNN7 yielded the best model for estimation of 
E.  

 

 

Fig. 6 The variable GRNNs used to predict E (with r2) 
 

 

Fig. 7 Comparison between predicted and measured E 
 

Table III presents the data used in GRNN7 as input and the 
measured and predicted E. The comparison between the 
predicted E from GRNN7 and the actual measured values is 
presented in Fig. 7. It shows very good agreement between 
predicted and measured results with r2=0.98.  
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from the correlations. When applying the available data it is 
clear that the available correlations in the literature poorly 
predicts E. This might be attributed to not including the value 
of Fc in the estimation of E in the literature correlations. The 
comparison between the GRNN model developed (GRNN7) 
and the other correlations in the literature are given in Fig. 10. 
The predicted values by the GRNN are in very good 
agreement with measured values compared to available 
correlations in the literature. Thus ANN highlights the 
importance of inclusion of Fc, which is easily available from 
grain size analysis, in the estimation of E.  

 

 

Fig. 10 The weight factors for every GRNN models 
 

TABLE IV 
 CORRELATIONS FOR PREDICTING (E) IN LITERATURE [5] 

Researcher Correlation R2 

Schmertman (1970) =3.5  0.252 

Webb (1969) ⁄ 2.5 75 0.260 

Schultze (1974) E (Kg/cm2) = 1.141qc + 33.129. 0.2552 

South African practice Es = 2.5 (qc + 3200) kN / m2 0.270 

VI. SUMMARY AND CONCLUSIONS 

A large amount of field and experimental data from the 
United Arab Emirates (UAE) was used to develop artificial 
neural networks (ANNs) that can estimate the angle of internal 
friction (Φ) and the soil modulus of elasticity (E) from CPT 
results. The general regression neural network (GRNN) 
architecture was utilized in the study. Most f the correlations 
available in the literature use the value of qc only or qc and 
sigma eff to estimate Φ or E. Seven different GRNN models 
were developed for each of Φ and E to study the influence of 
other easily available-parameters that can affect the prediction 
of the soil properties from CPT results. The predicted soil 
properties by GRNN models were compared to other 
correlations available from the literature. The following 
conclusions can be withdrawn: 

A. For Estimating Φ from CPT Results: 

1) The inclusion of Friction ration (Fr) in the estimation of Φ 
improved the predicted Φ values considerably.  

2) The best GRNN model was the model that included qc, Fr 
and sigma eff as input parameters to the model. 

3) The individual smoothing factors reflecting the weight of 
each input parameter for that GRNN model were 
compared (qc=0.988, δeff=3.00 and Fr=2.43). Therefore, 
(δeff) is the first input variable that influences the 
network, the friction ratio (Fr) is the second one and qc is 
the last one. 

4) When compared to other predictions from the literature, 
the obtained results from GRNN were in very good 
agreement with actual measured values of Φ (r2=0.9).  

B. For Estimating E from CPT Results: 

1) The inclusion of fines content (Fc) in the estimation 
improved the predicted E values considerably. 

2) The best GRNN model was the model GRNN7 that 
included qc, Fc, D50 and Depth of water table below plate 
(DWT) as input parameters (with r2=0.98). However, the 
influence of D50 and DWT were minor. Therefore, 
another GRNN (GRNN3) that includes only qc and Fc 
can be used in the estimation (with r2=0.96).  

3) For GRNN7, the first input variable that influences the 
network is qc followed by Fc then D50 then DWT (with 
factors for qc=2.7, Fc=2.3, D50=0.71 and GWT=0.35). 
For GRNN3, the first input variable that influences the 
model is qc followed by Fc (with factors for qc=2.8 and 
Fc=1.6). 

4) The obtained results from GRNN were in very good 
agreement with actual values of Φ (r2=0.9) compared to 
other predictions from the literature. 

The paper demonstrated the efficiency of the use of ANN in 
the estimation of Φ and E. ANN was proved to be a very 
powerful tool that could include other easily available 
influential parameters on the Φ and E estimation. It 
highlighted the importance of including Fr in the Φ prediction 
and Fc in the E prediction. It is believed that the developed 
prediction models will be of benefit to engineers in UAE 
specifically and geotechnical engineers in general.  
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