
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

721


Abstract—Formal verification is proposed to ensure the

correctness of the design and make functional verification more
efficient. As cache plays a vital role in the design of System on Chip
(SoC), and cache with Memory Management Unit (MMU) and cache
memory unit makes the state space too large for simulation to verify,
then a formal verification is presented for such system design. In the
paper, a formal model checking verification flow is suggested and a
new cache memory model which is called “exhaustive search model”
is proposed. Instead of using large size ram to denote the whole cache
memory, exhaustive search model employs just two cache blocks. For
cache system contains data cache (Dcache) and instruction cache
(Icache), Dcache memory model and Icache memory model are
established separately using the same mechanism. At last, the novel
model is employed to the verification of a cache which is module of a
custom-built SoC system that has been applied in practical, and the
result shows that the cache system is verified correctly using the
exhaustive search model, and it makes the verification much more
manageable and flexible.

Keywords—Cache system, formal verification, novel model,
System on Chip (SoC).

I. INTRODUCTION

ITH increasing design complexity, verification becomes
an important aspect of the design flow. In the meantime

it has been observed that up to 80% of the overall design costs
are due to verification. This is one of the reasons why formal
verification method has been proposed as alternative to typical
simulation method, since it cannot guarantee sufficient
coverage of the design.

Formal verification has gained a lot of attention, because it
allows proving the correctness of a circuit. And it ensures 100%
functional correctness. Besides being more comprehensive,
formal verification methods have also shown to be more cost
effective in many cases, while testbench creation - usually a
time consuming and error prone task - becomes superfluous [1].

Block-level verification is essential when working with SoC
designs. Cache is one of the most important parts of SoC
blocks. So cache verification becomes more and more
significant. One of the most primary function challenges in
cache design is the management of the integrity of the data
transferred between cache and main memory. This problem is
termed as cache coherence [2], [3]. As our cache control unit

Guowei Hou is with the Beijing Microelectronics Tech. Institution (BMTI),

Beijing, China (phone: 18811721249; e-mail: maxhou@163.com).
Lixin Yu is with Beijing Microelectronics Tech. Institution (BMTI),

Beijing, China. He is now with the Department of SoC (e-mail:
745845791@qq.com).

Wei Zhuang, Hui Qin, and Xue Yang are with the SoC Department, Beijing
Microelectronics Tech. Institution (BMTI), Beijing, China.

has an Icache used to control instruction cache, a Dcache used
to control data cache, an Acache used to manage the
communication between cache and Advanced High
Performance Bus (AHB), and a MMU whose function is to
convert the virtual address into the physical address [4]. The
cache operations consist of read and write byte, half word,
word, double word, burst read model, etc. Thus the verification
of cache coherence is very complex. Simulation verification
depends on test benches or vectors for verification and the
speed relies on the size of design [5]. On the contrary, formal
verification with model checking technology analyzes the RTL
structure of the design and characterizes its internal nature.
Each assertion violation discovered by model checking is
reported with the counter-example, which uncovers functional
errors that would have been missed using traditional
verification methodologies.

In this paper, a formal verification of cache which is a
module of a custom-built SoC system is presented using the
exhaustive search cache memory model. Most of the models
that have been used in cache formal verification apply large
size rams to model the whole cache memory. However, this
paper chooses four cache blocks as representations. Two of
them are used to represent Icache memory, while the other two
represent Dcache memory. This exhaustive search model
reduces the capacity of cache memory model and makes the
formal verification of cache system much more convenient.

The rest of the paper is organized as follows. Section II
provides an overview of some verification techniques of cache
including simulation and formal methods. Section III analyzes
the limitation of model checking and the difficulties of cache
formal verification. Section IV presents the flow of formal
model checking and proposes the exhaustive search model of
cache memory. Section V offers concluding remarks.

II. RESEARCH ACTUALITY

There are many verification techniques, although the area of
formal verification of cache is extremely significant, it is
relatively new compared with simulation method. To our best
knowledge, there has been some work published in this area
[6]. However, the area of validation of cache has been a
relatively more popular area of research. In this section,
simulation and formal verification based on model checking are
reviewed.

A. Simulation Verification

Simulation techniques are in common use. Engineer abstract
the model from the specification of circuit, and then add
external stimuli or data into this model, finally they estimate

Formal Verification of Cache System Using a Novel
Cache Memory Model

Guowei Hou, Lixin Yu, Wei Zhuang, Hui Qin, Xue Yang

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

722

whether the design obtain the design goal by observing the
simulation result.

Directed test cases which are hand generated carefully by
verification engineers become ineffective because of their sheer
size and complexity. Then random and pseudo-random test
generation techniques [7] are becoming popular. However,
these techniques encounter some trouble owing to the issue of
coverage.

All in all, simulation verification’s advantage are - it is a
classical verification, and now is in common use [8]. While its
disadvantages are - it is an incompleteness method, and is a
time consuming and nonflexible one to verify cache design.

B. Formal Verification

In design verification, it is difficult to detect bugs that
depend on specific sequences of events. Detecting obscure bugs
early on and the exhaustive nature of formal verification have
been the main driving forces toward using formal verification
techniques. Formal verification use mathematics to validate
that the RTL design is consonant with design intention
specification. Formal verification methods do not require test
benches or vectors. They theoretically promise a very fast
verification time and 100% coverage. The main idea of formal
hardware verification is to prove the functional correctness of a
design instead of simulating some vectors. Different techniques
have been proposed for the proof process. Most of them work in
the Boolean domain. There into, model checking [9] is one of
the most useful formal verification methods.

Model checking perform an exhaustive checking – that is
one that explores all possibilities and either confirms that a
design responds correctly, or provides an error trace showing
where the design responds incorrectly. A model checker is a
software package that accepts as inputs a circuit model and a set
of properties [10]. Formal model checking exploits formal
mathematical techniques to verify behavioral properties of a
design. The model checker evaluates the properties against the
model. If the model satisfies the properties, it confirms that the
model satisfies the property; otherwise, it will point out the
error trace related to the properties.

Formal model checking is well suited to complex control
structures, such as cache control unit. And it does not require
any testbenches or vectors. The properties to be verified are
specified in the form of queries. When the tool finds an error, it
generates a complete trace from initial state to the state where
the specified property failed.

III. FORMAL MODEL CHECKING LIMITATION AND

DIFFICULTIES OF CACHE VERIFICATION

Formal model checking provides an exhaustive check of the
design properties and can be performed after link checking
RTL code. This process enables early identification of error
conditions that are not obvious candidates for deterministic
simulation. However, it also has some limitations.

A. Formal Model Checking Limitations

Formal model checkers available in the industry have
capacity restrictions. The correctness and integrity that model

checking verification can achieve depends on the completeness
and definitions of the properties that the users supply.

Formal model checking is effective for verifying
control-intensive designs, but not for data path-intensive
designs. Designs with data paths often have very large and deep
state spaces, and the state space explosion will be exploded.

Model checking is not yet widely used as a verification tool
because earlier model checkers are difficult to run. The
property specifications are not intuitive, and designers have to
learn special-purpose specification languages [11].

B. Difficulties of Cache Formal Verification

This paper applies formal model checking method to a cache
system verification work, in the process, some difficulties are
encountered.

First, the most important function that needs to be validated
is cache coherence. As the cache consists of Dcache, Icache and
Acache three main parts, it may be not easy to verify the whole
cache system at the very start.

Second, to confirm that all functions are correct; this paper
considers the communications between cache and cache
memory, cache and AHB, cache and Integer Unit (IU). So in
the process of verification, three monitors need to be
established to represent the real units.

Third, the most important and difficult problem of the cache
formal verification is the model of cache memory. As can be
seen, the real cache memory is a very large ram, so most of the
cache memory models that have been applied in cache
verification are very complex.

To overcome these three difficulties, model checking
method using exhaustive research cache memory model is
presented.

IV. MODEL CHECKING METHOD AND EXHAUSTIVE RESEARCH

CACHE MEMORY MODEL

A. Formal Model Checking Flow

Formal model checking requires the RTL code of the design.
Most model checkers support Verilog description of the design.
Fig. 1 shows the flow of model checking methodology.

1. Extract Properties

The properties that are useful to verification are Boolean
expressions extracted from an informal description in the
design’s functional specification, design documents and
informal communication with the hardware designer.

2. Partition the Design

Due to the problem of state space explosion, sometimes it is
necessary to partition the design into smaller parts and verify
each part separately. Because most designs use a hierarchical
design methodology for model checking purposes, the same
division been used by designer can be used here. For each part
to be verified independently, it is important to discuss with
designers to determine properties.

3. Model the Environment

The design must communicate with peripheral units in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

723

practice, so all possible interactions of the design with its
environment must be calculated during the verification process
[12]. This means engineers should model the environment by
specified some constraints of design environment.

4. Verify Properties and Debug the RTL Design

After all steps above, verification tool will use its formal
engine to validate the assertions (properties) in terms of the
assumptions (constraints). If the verification of a property fails
in a model checker, the tool will indicate a counterexample that
is the shortest trace from an initial state to the failed state. The
tool will also show the incorrectly assigned signals and other
signals that are part of the property being verified which will
help to backtrack through the source code and locate the error.

Then, the error information should be analyzed carefully. If
the cause is due to an inaccurate abstraction of the environment,
engineers should review the queries which consist of a set of
properties and constraints. In contrast, if the cause of error is
due to a design error, then designers should fix the bug.

Fig. 1 Model Checking Methodology Flow

B. Model of Cache Memory

Cache memory is a very important and complex part of the
cache environment according to the following two reasons.
First, data needed by IU, tag and index that are used to identify
different address, and valid which is used to indicate whether
the data in cache memory is available are all saved in cache
memory, so the correctness of data operation has important
relevant with cache memory. Second, due to the big size of data
cache and instruction cache data, the capacities of cache
memory is too large and this will make cache formal
verification too complex. To deal with this problem, simplified
and exhaustive data cache memory and instruction cache
memory model are presented with the help formal technology.

Instead of using large size rams to model the whole cache
memory, this paper chooses four cache blocks as
representations. Two of them are used to represent instruction

cache memory, while the other two represent data cache
memory.

1. Establish Dcache and Icache Memory Model

Dcache memory is modeled by D_RAM[1:0][33:0] and
D_RAM_FIRST[1:0][33:0]. As data cache is
two-set-associative, D_RAM[0][33:0] and D_RAM[1][33:0]
represent set0 and set1 respectively. The model consists three
parts: TAG, INDEX and VALID. TAG is used to save the
address information which is used to indicate whether the word
is requested. INDEX points out which cache line is to read,
while valid is used to check the availability of words in the
corresponding cache line.

Once the first dcache miss appear, D_RAM_FIRST and
D_RAM will both be updated. From then on, every time the
same dcache line misses, D_RAM will be updated and
D_RAM_FIRST[1:0][3:0] will be used to save the valid value
of former D_RAM while D_RAM_FIRST[1:0][33:4] keep
immobile. Take set0 and valid[0] as an example. To validate
the correctness of valid updating operation, the value of
D_RAM_FIRST[0][3:0] and D_RAM[0][3:0] are compared
when D_RAM_FIRST[0][33:6] amounts to
D_RAM_FIRST[0][33:6]. If D_RAM_FIRST[0][3:1] is equal
to D_RAM[0][3:1] and D_RAM[0][0] is high, then valid
updating operation has been proved correctly.

Instruction cache memory model is established with the
similar method of data cache memory.

2. Significance of Cache Memory Model

As the cache that is verified is a cache control unit without
cache memory in practice, thus a monitor to model the memory
which is necessary for cache verification should be made. The
model has three functions in the paper. First, some bits of
D_RAM/I_RAM are used to judge whether the cache miss or
hit. Second, in cache miss case, some bits of the model act as
the conditions to estimate whether the cache miss appears in the
same cache line. Third, the valid value of model is due to
validate the correctness of cache valid updating operation just
as presented in Section IV.B.1.

3. Feasibility and Predominance of the Exhaustive Search
Model

This method to model memory is acceptant because formal
verification applies non-determinism, which means all the
possible values will be applied at Design under Testing (DUT)
inputs. Thus the checker needs to watch only a part of the whole
events, streams and so on. Once “a part” thoroughly picks any
possibility, the checker covers all.

Due to the formal technique, the capacity problems of all
cache memory models are greatly alleviated. The complexity of
the cache verification has also been shrunk.

C. Result

The paper verifies a cache system using the exhaustive
search cache memory model. Fig. 2 shows the verification
result. As can be seen, 347 properties which consists 93
assumptions, 113 assertions and 141 covers have been
considered in the verification process. All assumptions are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

724

environment constraints which are used to restrict the inputs of
the device under verification to reasonable values. Assertions
have two functions. Those who correspond to the constraints
are used to monitor whether the constraints are violated, while
others are used to validate cache functions like data integrity. In
Fig. 2, 113 assertions are all proven and the covers are covered
100%. That means the cache is verified correctly.

Fig. 2 Result of cache formal model checking

In the verification process, the exhaustive search cache

memory model is used. It proves that the cache system RTL
consistent with design intention specification. The model
reduces the capacity of cache memory monitor and makes the
formal verification much more straightforward and convenient.

V. CONCLUSION AND FUTURE WORK

The main contribution of this paper is the emphasis on the
importance of formal model checking for cache system
verification. Applying formal methods, some bugs that are
difficult to be detected by typical simulation verification can be
detected. With the help of formal technique, the exhaustive
search model of cache memory which makes the cache
verification more manageable is presented. The paper also
shows the importance of extracting appropriate properties from
the specification documents and converting them into accurate
assertions, assumptions and coverage.

Model checking is now powerful enough to be widely used
in SoC block-level verification especially in cache verification.
More research should be done about formal verification
methods, and more work should be done to optimize the new
model of cache memory.

REFERENCES
[1] R. Drechsler, Advanced Formal Verification (M), Kluwer Academic

Publishers, 2004.
[2] S. Srinivasan, P. S. Chhabra, P. K. Jaini, A. Aziz and L. John, “Formal

Verification of a Snoop-based Cache Coherence Protocol using Symbolic
Model Checking,” International Conference on VLSI Design, pp.
288-293, Jan. 1999.

[3] P. Dhakad, A. Katariya and A. Arya, “Performance Verification for
Cache Memory of Multicore Processor,” International Conference on
Computational Intelligence and Communication Network, pp. 622-627,
Nov. 2010.

[4] LEON2 Processor User’s Manual: Version 1. 0. 30, Jul. 2005.
[5] D. L. Dill, A. J. Drexler, A. J. Hu and C. H. Yang, “Protocol Verification

as a Hardware Design Aid,” VLSI in Computers and Processors, pp.
522-525, Oct. 1992.

[6] E. T. Schubert, “Formal Verification of an MMU and MMU Cache,” 3rd
NASA Symposium on VLSI Design, vol. 4, 1991.

[7] T. J. Li, J. M. Zhang and S. K. Li, “An FPGA-based Random Functional
Verification Method for Cache,” IEEE Eighth International Conference
on Networking, Architecture and Storage, pp. 277-281, Jul. 2013.

[8] M. Tomasevic and V. Milutinovic, “A Simulation Study of Snoop Cache
Coherence Protocols,” Hawaii International Conference on System
Sciences, pp. 427-436, Jan. 1992.

[9] W. Grumberg and D. E. Long, “Model Checking and Modular
Verification,” ACM Transaction on Programming Languages and
Systems, pp. 843-871, 1991.

[10] A. Miczo, Digital Logic Testing and Simulation, 2nd edition, published
by John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.

[11] O. Rashinkar, P. Paterson and L. Singh, System-on-a-chip Verification
Methodology and Techniques, Kluwer Academic Publishers, 2002.

[12] B. H. Bao, J. Bormann, M. Wedler, D. Stoffel and W. Kunz, “Formal
Plausibility Checks for Environment Constraints,” Forum on
Specification and Design Languages, pp. 13-18, Sep. 2012.

