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Abstract—The characteristic requirement for producing 
rectangular shape bottles was a uniform thickness of the plastic bottle 

wall. Die shaping was a good technique which controlled the wall 

thickness of bottles. An advance technology which was the finite 

element method (FEM) for blowing parison to be a rectangular shape 

bottle was conducted to reduce waste plastic from a trial and error 

method of a die shaping and parison control method. The artificial 

intelligent (AI) comprised of artificial neural network and genetic 

algorithm was selected to optimize the die gap shape from the FEM 

results. The application of AI technique could optimize the suitable 

die gap shape for the parison blow molding which did not depend on 

the parison control method to produce rectangular bottles with the 

uniform wall. Particularly, this application can be used with cheap 

blow molding machines without a parison controller therefore it will 

reduce cost of production in the bottle blow molding process.  
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I. INTRODUCTION 

HICKNESS of bottles which produced by the extrusion 

blow molding process was major controlled with parison 

controller [1], [2]. Parison programming could adjust parison 

wall thickness by moving the mandrel up or down during 

extrusion. Thickness of parison could increase or reduce along 

the bottle height which was depended on the blow-up ratio 

between the diameter of the finished bottle and the diameter of 

parison. Therefore, parison programming was proper to used 

for bottles which had an axis-symmetry shape. 

Nowadays finite element method (FEM) was conducted to 

simulate the blow molding process of plastic bottles [3]–[5]. 

The simulation was performed to determine parison thickness 

which was proper to blow bottles with uniform thickness. It 

was the advance method to reduce the waste plastic from a 

trial and error method for setting the parison controller. 

However simulation of the plastic bottle blow molding was 

not simple to determine parison thickness rapidly. It consumed 

many time to find out the suitable thickness of parison. 

Some research aimed to apply optimizing techniques for the 

relative function between the parison and the finished bottle 

wall thickness. The objective was to search for an appropriate 
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bottle thickness with minimum weight under the mechanical 

performance constraint which required for bottle testing [6]. 

Traditional optimization schemes such as the gradient based 

method might not be suitable for solving complex behavior 

with high degree of nonlinearity which was found in the 

extrusion blow molding process. 

The artificial intelligent (AI) technique comprised of 

artificial neural network (ANN) and genetic algorithm (GA) 

which was appropriate to applied in the FEM of the bottle 

blow molding process. The ANN was used to build the 

relative function between the initial parison thickness and 

thickness distribution along the bottle height. The GA had 

advantage ability over other optimization techniques and then 

it was used to search for the better solution near optimum of 

the current solution without trapping in local optimum [7]–[9]. 

The ANN and GA was couple of AI techniques for 

determining a suitable parison thickness however limited only 

an axis-symmetric shape of bottles because of the complexity 

to define the input and output of the ANN function. 

The rectangular shape preferred to design for lubricant oil 

bottles. These bottles could not have a uniform wall by setting 

parison with the parison programming method arising from 

the difference of the blow-up ratio around the bottle wall. The 

die shaping was an only one method to adjust thickness 

around the parison diameter. Initial method to adjust a die gap 

for a suitable thickness of parison to obtain the uniform wall 

thickness of rectangular shape bottles was the trial and error 

method. Therefore, the waste plastic and time could not avoid 

for the bottle blow molding process.  

This research aimed and challenged to apply AI techniques 

which were ANN and GA to optimize the die gap shape for 

the parison blow molding process and the uniform thickness of 

a rectangular bottle. The FEM was performed to create the 

input and output data under the validation of finite element 

results with experiments. This application can be improved for 

another rectangular shape bottles and is useful for the cheaper 

blow molding machines which not have without the parison 

controller. 

II.  THE BLOW MOLDING EXPERIMENTS FOR RECTANGULAR 

SHAPE BOTTLES  

Rectangular shape bottles used for containing lubricant oil 

are produced by using a blow modeling machine, Sinco model 

5000DC, as shown in Fig. 1. Parisons were extruded thought 

die which were adjusted die gap shape and had an outer 

diameter of 52.0 mm for blowing rectangular shape bottles. 
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Fig. 1 (a) A HDPE lubricant oil bottle and (b) Parison

blow molding machine with the adjusting die

 

Fig. 2 CAD model of a lubricant oil bottle

 

Fig. 3 The finite element model preparing for 

simulation of a lubricant oil bottle

 

Parison thickness, temperature and blowing pressure were 

measured for input data of the finite element (FE) model

bottle thickness obtained from measuring wall

 

 

lubricant oil bottle and (b) Parison extrusion by 

with the adjusting die 

 

a lubricant oil bottle 

 

for the blow molding 

a lubricant oil bottle 

blowing pressure were 

the finite element (FE) model. The 

bottle thickness obtained from measuring wall of bottles using 

a vernier caliper with an accuracy of 

model absolute 150 mm, and would use

validate with the finite element result

III. THE FEM FOR AN EXTRUSION 

RECTANGULAR 

The lubricant oil bottle which had a capacity of 1 liter

modeled by the computer a

SolidWorks version 2011, 

simulated model (Fig. 2). The parison i

elements which has thickness around a diameter according to 

the experimental thickness as shown in Fig. 3

parison could indicate by color contour.

thinnest parison wall was signified by yellow

respectively. The surface model of mold cavity was defined as 

rigid body and assigned contact boundary 

boundary conditions assigned on the FE

First was the fix condition at top node of a parison in y 

direction (Ty = 0) and second was the pressure load on the 

inside face of parison elements. The contact condition between 

parison elements and mold 

glued or further moving of node were not allowed after the 

mold collision or closing. Parison behaviors which were cool 

and solidify were almost instant

cavity. 

The viscoelastic material model w

large deformable behavior of po

Properties of high density polyethylene

temperature of 150 °C were modeled by using the generalized 

Maxwell constitutive equation in the form of shear r

spectrum [10] as follows 

 

���� � �� � ∑	

�

where G(t) is shear relaxation modulus and

time. Time-temperature shift f

effect of temperature changing during the

process using William-Landrel

shown in (2), 

 

�� �� �
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where aT is a time-temperature shift factor at temperature

(°C), C1 and C2 is the WLF constant, and

temperature (°C). The parameters of WLF for HDPE used in 

this work are C1 = 6.928, C2 = 350 and

The blow molding of a lubricant oil bottle was analyzed and 

performed using the FE software 

The pressure of 2 MPa was defined 

blowing step of the blow moldi

0.5 sec and used time to analyze about 10

computer with a processor specification of Core 2 Duo 2.4 

GHz. FE results are illustrated

lubricant oil bottle which has

Parison thickness distribution was depicted

The thickest and thinnest bottle wall was signified

with an accuracy of ±0.01 mm, Mitutoyo 

and would use to compare and 

with the finite element result. 

XTRUSION BLOW MOLDING OF A 

ECTANGULAR SHAPE BOTTLE 

which had a capacity of 1 liter was 

computer aided design (CAD) software, 

 for using to be cavity of the 

. The parison is modeled by shell 

thickness around a diameter according to 

as shown in Fig. 3. Thickness of 

by color contour. The thickest and 

innest parison wall was signified by yellow and blue, 

The surface model of mold cavity was defined as 

contact boundary conditions. Two 

conditions assigned on the FE model of a parison. 

First was the fix condition at top node of a parison in y 

= 0) and second was the pressure load on the 

inside face of parison elements. The contact condition between 

parison elements and mold cavity surfaces was defined as 

glued or further moving of node were not allowed after the 

arison behaviors which were cool 

were almost instant after parison connected to the 

The viscoelastic material model was used to describe the 

large deformable behavior of polymer at high temperature. 

high density polyethylene (HDPE) polymer at a 

modeled by using the generalized 

Maxwell constitutive equation in the form of shear relaxation 

�

	
�� �1 � ���/���       (1) 

 

s shear relaxation modulus and τ is relaxation 

temperature shift function was then used to reveal 

effect of temperature changing during the blow molding 

Landrel-Ferry (WLF) equation as 

���� !"�

���� !"�
           (2) 

temperature shift factor at temperature T 

WLF constant, and Tref is a reference 

temperature (°C). The parameters of WLF for HDPE used in 

= 350 and Tref = 150 °C. 

The blow molding of a lubricant oil bottle was analyzed and 

performed using the FE software – MSC.Marc version 2010. 

MPa was defined into parison model. The 

blowing step of the blow molding process finished in time of 

to analyze about 10 min by a personal 

computer with a processor specification of Core 2 Duo 2.4 

illustrated the parison blowing to be the 

lubricant oil bottle which has a rectangular shape in Fig. 4. 

ess distribution was depicted by a color contour. 

innest bottle wall was signified by yellow 
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and blue, respectively. 

The thickness around bottles at 50% of 

compared to determine an error of the FEM.

between the average wall thickness of bottles 

shown by graphs in Fig. 5. An average error 

31.37% when compared with experimental results.

 

Fig. 4 Sequence images of finite element result

of a lubricant oil bottle 

 

Fig. 5 The relative graphs between wall thicknesses and angles 

around bottles at 50% of bottle height

IV. DESIGN OF EXPERIMENT AND DATA P

An initial parison thickness and a finished bottle thickness 

was designed to be the set of input and output data for training 

ANN of the extrusion blow molding process

 

at 50% of bottle height was 

error of the FEM. The comparison 

l thickness of bottles and FE results is 

An average error of FE obtained 

al results. 

 

Fig. 4 Sequence images of finite element results for the blow molding 

 

 

between wall thicknesses and angles 

around bottles at 50% of bottle height 

PREPARING FOR ANN 

An initial parison thickness and a finished bottle thickness 

he set of input and output data for training 

ANN of the extrusion blow molding process. The thickness 

bottle of 1.16 mm was required

the FE result of top load test with the weight of 25 kg and 

maximum bottle weight lower than 80 g. The cross section at 

the 50% of the bottle height was divided equality to be 12 

zones around the diameter as shown in Fig. 6

the parison and bottle cross section wa

only for the input and output variables 

shape. The value of initial parison thickness at each zone was 

assigned to be 6 input variables for ANN training which 

consisted of t1, t2, t3, t4, t5 and 

output data from 6 zones around 

same side as parison was collected and assigned to be output 

variables which comprised 

b3(min, max), b4(min, max), b

for supervised learning of ANN

The average parison thickness around

calculated by using theoretical blow

[11] and used to be an ini

element analysis (FEA). 

 

�#$% �
 

where Pb is perimeter of the bottle at the middle height,

parison diameter (52 mm) and

thickness (1.16 mm). The FEA wa

of the finished bottle thickness results in each 

was collected and used to determine

ANN using (4), 

 

�
 �
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where ti is an initial parison thickness at each zone

parison thickness in two connected zones was varied into three 

levels simultaneously while the other three zones remain fixed 

to the middle level value. The varying of the initial thickness 

was bring to the next two connected zones and this method 

repeated until every two connected zones had been completely

varying to an array form of the initial thickness. Constraints 

from (3) and (4) produced the number of data sets in the array 

concluded as the following (5),

 

'(�) � 1
 

where n is level (n = 3) and i
All input data would be added with a random number to 

prevent memorization of the data without learning of ANN. 

Each set of input data was used as the initial condition of FEA 

and the final thickness result would be collected to use as 

output data. The collected data would be stored in array to 

teach ANN in the next step. 

V. ARTIFICIAL NEURAL 

This research used multilayer feed forward neural network 

and Levenberg-Marquardt back propa

the network. The architecture of neural network was designed 

by two hidden layers where each hidden layer consisted of 20 

was required which was determined from 

t with the weight of 25 kg and the 

maximum bottle weight lower than 80 g. The cross section at 

height was divided equality to be 12 

zones around the diameter as shown in Fig. 6. Half portion of 

parison and bottle cross section was needed to be collected 

for the input and output variables due to a symmetrical 

The value of initial parison thickness at each zone was 

assigned to be 6 input variables for ANN training which 

and t6. In the same manner, the 

6 zones around cross section of bottles in the 

was collected and assigned to be output 

 of b1(min, max), b2(min, max), 

), b5(min, max) and b6(min, max) 

ervised learning of ANN. 

average parison thickness around cross section could be 

calculated by using theoretical blow-up ratio as shown in (3) 

initial parison thickness of finite 

� *�

+,
�-            (3) 

meter of the bottle at the middle height, D is 

parison diameter (52 mm) and tb is the objective of bottle 

(1.16 mm). The FEA was then performed and results 

bottle thickness results in each horizontal zone 

collected and used to determine input variables of the 

�./0

&"!1,�
�-            (4) 

parison thickness at each zone. The initial 

parison thickness in two connected zones was varied into three 

levels simultaneously while the other three zones remain fixed 

middle level value. The varying of the initial thickness 

was bring to the next two connected zones and this method 

repeated until every two connected zones had been completely 

varying to an array form of the initial thickness. Constraints 

produced the number of data sets in the array 

concluded as the following (5), 

1� � 54           (5) 

i is zone of parison (i = 6).  
All input data would be added with a random number to 

prevent memorization of the data without learning of ANN. 

Each set of input data was used as the initial condition of FEA 

and the final thickness result would be collected to use as 

collected data would be stored in array to 

EURAL NETWORK MODEL 

This research used multilayer feed forward neural network 

rdt back propagation algorithm to train 

hitecture of neural network was designed 

two hidden layers where each hidden layer consisted of 20 
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and 10 neurons, respectively. Practically neural networks often 

had 2 to 3 layers while 4 or more layers network was not 

commonly using in practice arising from the increasing of 

complexity might affect to the amount of time spent during 

training of the network or in data memorial results instead 

learning [12]. 

 

 

Fig. 6 The input and output data diagram selecting from the FE 

results 

Input variables of the neural network would be normalized 

to the values between 0 and 1 for the appropriately using with 

logarithm of Sigmoid transfer function. The normalization 

equation used to modify value of input data such as the initial 

parison thickness in each zone may conclude as 

 

�
,	�5 �
������,1�6�

���,1.7���,1�6�
            (6) 

 

The initial parison thickness and analyzed results of final 

bottle thickness in each zones was assigned as input and 

output data for training the neural network. Back propagation 

method was used to train the network with repeating the 

adjustable value of weight and bias until weight and bias was 

modified into the suitable value. The successfully training of 

ANN model could be used to build the thickness relationship 

function between the initial parison thickness and the final 

bottle thickness. 

VI. GENETIC ALGORITHM 

The objective for optimizing the die gap was the parison 

blow molding to produce bottles with the minimum uniform 

thickness of 1.16 mm. In this case, the training network was 

used to build the fitness function for optimization of the die 

gap shape with GA. The fitness function used in this research 

based on the minimization of sum of the residual square 

approach. The finalized fitness function can define by 
 

8��� � ∑ ��
 � �-�(

          (7) 

 

The 40 population sizes were set. The upper and lower 

bound within the same range as ANN normalization was 

applied. The optimum searching by GA which converged after 

there was no further improvement or change in value lower 

than predetermination of the fitness tolerance in each 

generation. The optimum of the symmetrical die gap in each 

zone which obtains from GA optimization is summarized in 

Table I.  

 
TABLE I 

THE OPTIMUM DIE GAP SHAPE IN EACH ZONES OBTAINING FROM GA 

t1 (mm) t2 (mm) t3 (mm) t4 (mm) t5 (mm) t6 (mm) 

1.9682 2.0094 1.6143 1.5523 2.2181 2.2772 

VII. RESULTS AND DISCUSSION 

The optimum die gap shape obtained from AI application 

would be validated by using to be an initial parison thickness 

of FEM. Simulation of the extrusion blow molding process 

was performed using a new optimized initial thickness. The 

thickness distribution of the finished bottle from parison with 

the non-die gap shaping and AI applied die gap shaping is 

depicted by the color contour as shown in Fig. 7. The FE 

result showed the thickness distribution on bottle surface at 

50% of bottle height area which used AI application for 

setting parison thickness was uniform with the thickness about 

1.16 mm. The simulated thicknesses at each angle around a 

centre of bottle cross section at 50% of bottle height are 

compared with the objective thickness of bottle by graphs as 

shown in Fig. 8. The AI application for the uniform thickness 

by optimizing die gab shape was in a good agreement with 

objective when proved with FEM. Thickness of bottle at 

position 75 degree was more than another area when the FEM 

used parison thickness from die without adjusting die gap 

shape. The trial die gap shape by die maker also has the 

finished bottle thickness was closed to the objective however 

lost many time for achieving the appropriate die gap shape. 

The bottle blow molding with AI technique for parison 

thickness obtained an average error of the finished bottle wall 

thickness from the thickness of objective about 5.62%. 

 

 

Fig. 7 Thickness distribution of final bottle by (a) non-die shaping 

and (b) AI applied die shaping 
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Fig. 8 The relative graphs between wall thicknesses and angles 

around bottles at 50% of bottle height for comparison parison inputs 

VIII. CONCLUSION 

Optimization of the die shape was performed for adjusting 

the die gap. Functions from AI application which was the 

combination of ANN and GA had been used to determine the 

suitable die gap shape for producing rectangular shape bottles 

with the uniform thickness. Input and output data obtained 

from the FE results which validated with experiment results 

was used for the ANN model. The objective was controlled by 

GA. The die gap shape which received from the AI technique 

was conducted to set as the initial parison thickness of FE 

model for simulating the blow molding process. Simulated 

results were compared with the objective. The comparison 

between bottle thickness and objective shown the optimized 

thickness was a good agreement with the objective thickness. 

This optimization technique with GA combined into the 

thickness relationship function could be applied to find the 

required die gap shape in the extrusion blow molding process 

to produce bottles which had a desire uniform thickness under 

the mechanical constraint. This method could be applied to 

complex shape bottles and reduce the need of trial and error 

method which supported to reduce the plastic waste, time and 

cost of production lines. Particularly, this method can use with 

the cheaper blow molding machine which not has the parison 

controller. 
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