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Abstract—In this study, we have focused our attention on 
combining of molecular imprinting into nanofilms and QCM 
nanosensor approaches and producing QCM nanosensor for anti-
CCP, chosen as model protein, using anti-CCP imprinted nanofilms. 
The nonimprinted nanosensor was also prepared to evaluate the 
selectivity of the imprinted nanosensor. Anti-CCP imprinted QCM 
nanosensor was tested for real time detection of anti-CCP from 
aqueous solution. The kinetic and affinity studies were determined by 
using anti-CCP solutions with different concentrations. The 
responses related with mass shifts (∆m) and frequency shifts (∆f) 
were used to evaluate adsorption properties. To show the selectivity 
of the anti-CCP imprinted QCM nanosensor, competitive adsorption 
of anti-CCP and IgM was investigated. The results indicate that anti-
CCP imprinted QCM nanosensor has higher adsorption capabilities 
for anti-CCP than for IgM, due to selective cavities in the polymer 
structure. 
 
Keywords—Anti-CCP, molecular imprinting, QCM nanosensor, 

rheumatoid arthritis. 

I. INTRODUCTION 

HEUMATOID arthritis (RA) which is the most common 
autoimmune disorder of the body's own immune system 

attacking healthy cells. RA has both articular and systemic 
effects. Until now romatiod factor (RF) assay is used the most 
commonly diagnosed RA but it is not specific. Anti-cyclic 
citrullinated peptide (anti-CCP) antibodies are IgG 
autoantibodies which recognize citrullinated peptides and 
offer improved specificity in early diagnosis of RA compared 
to RF. Anti-CPP antibodies have received special attention, 
since they may be helpful for RA diagnosis; they are 
moderately sensitive but highly specific to RA, with a 
specificity that is higher than that of RF. Anti-CCP antibodies 
have specificity for the diagnosis of RA from 91 to 98% and 
the sensitivity rate of 41-68% [1]-[4].  

Molecularly imprinted polymers (MIP) are materials that 
are easy to prepare, less expensive, stable, have talent for 
molecular recognition and also can be manufactured in large 
quantities with good reproducibility. Molecular recognition-
based adsorption techniques have received much attention in 
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several fields because of their high selectivity for target 
molecules [5]-[7].  

Quartz crystal microbalance (QCM) is an effective, simple, 
inexpensive approach mass changes that can be converted into 
an electrical signal. The applications for specific 
determination of chemical substances or biomolecules, crystal 
electrodes, cover by the thin films for bind or adsorption of 
molecules [8], [9]. QCM nanosensors, member of mass-
sensitive chemical sensors, have been getting researchers’ 
attention because of their properties such as high selectivity, 
low cost, portability, stability and simplicity [10]. The QCM 
allows dynamic monitoring of biochemical interactions, using 
an oscillating crystal with the biomolecules immobilized on its 
surface. The increased mass, associated with the binding 
reaction, results in a decrease of the oscillating frequency [11]. 
Recently, QCM-based nanosensors have been used in the 
detection of several analytes such as clinical targets, 
environmental contaminants, marker of genetic diseases, 
determination of oxidative stress, quantification of protein, 
detection of genetically modified organisms (GMOs) [12]-
[14].  

II. EXPERIMENTAL 

A. Modification of QCM Nanosensors Surfaces with Allyl 

Mercaptan 

As shown in Fig. 1, the modification of QCM nanosensors 
was carried out with allyl mercaptan (CH2CHCH2SH). Before 
the modification, QCM nanosensors surfaces were cleaned 
with acidic piranha solution (3:1, H2SO4:H2O2, v/v), then 
washed with deionized water and ethanol, respectively, and 
dried at vacuum incubator. Then, allyl mercaptan was dropped 
onto the QCM nanosensors surfaces and incubated for 12 h in 
a sealed container in order to introduce allyl groups onto the 
nanosensors surfaces. After the modification, QCM 
nanosensors were rinsed with ethanol to remove unbound allyl 
mercaptan molecules and dried at vacuum incubator. 

B. Preparation of Anti-CCP/Acrylamide Precomplex  

To prepare anti-CCP/acrylamide (AA) precomplex, 45 µL 
anti-CCP and 21 mg AA dissolved in 500 µL water was stirred 
in 30 min with the help of magnetic stirrer. To define optimum 
template molecule and monomer ratio, anti-CCP and AA 
mixed in different ratios and optimum ratio was determined by 
using UV-visible region spectrophotometry. 
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Fig. 1 Schematic representation of modification of QCM nanosensors 
surfaces with allyl mercaptan 
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Fig. 2 FTIR-ATR spectra of the nonimprinted (NIP) anti-CCP and 
imprinted (MIP) QCM nanosensors 

C. Preparation of Anti-CCP Imprinted QCM Nanosensor  

QCM nanosensor was prepared by using precomplex and 
MBAAm as crosslinker. After addition 2 µL (%10) APS and 2 
µL TEMED as an initiator/activator pair, allylated QCM 
nanosensor was coated uniformly by spin coating. The 
polymerization was carried out under UV light by 
photopolymerization method for 30 min. At the end of 
polymerization, the unreacted monomers and impurities were 
removed by methyl alcohol and dried with N2 gas at room 
temperature. The nonimprinted QCM nanosensor was 
synthesized by applying the same procedure without addition 
of the template, anti-CCP.  

III. RESULTS 

A. Characterization 

Anti-CCP imprinted and nonimprinted QCM nanosensors 
were characterized by Fourier transform infrared 
spectroscopy-attenuated total reflectance (FTIR-ATR), atomic 

force microscopy (AFM), contact angle measurements and 
ellipsometry. 

As seen in FTIR-ATR spectra, the most important 
adsorption band at 3360 cm−1 represents v(N-H) asymmetric 
stretching band, respectively. The FTIR-ATR bands observed 
at 2927 cm−1 and 1455 cm−1 were assigned to the aliphatic 
stretchings of v(-CH3) and v(C=O), respectively. Other bands 
were the asymmetric and symmetric bands v(COOH) at 1565 
cm−1 and at 1416 cm−1. The v(C-N) vibration band was 
observed at 1253 cm-1. The disappearance of the band of 
monomer at 1633 cm-1 showed that the polymerization has 
successfully performed. 

 

 

 

Fig. 3 AFM images of the anti-CCP imprinted (MIP) and 
nonimprinted (NIP) QCM nanosensors 

 
The anti-CCP imprinted (MIP) and nonimprinted (NIP) 

QCM nanosensors were characterized by AFM (Fig. 3). 
Surface deepnesses determined by AFM measurements of the 
anti-CCP imprinted (MIP) and nonimprinted (NIP) QCM were 
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26.38 nm and 18.55 nm with thicknesses 3.34 nm and 0.95 
nm. Also, surface depths obtained from ellipsometry of the 
anti-CCP imprinted (MIP) and nonimprinted (NIP) QCM were 
94.4 ± 0.7 nm and 90.0 ± 0.9 nm in Fig. 5. As a conclusion, it 
can be deduced that homogeneous and monolayer attachment 
of the nanofilm has been accomplished. 

 

 

Fig. 4 Contact angle images of the anti-CCP imprinted (MIP) and 
nonimprinted (NIP) QCM nanosensors 

 

 

Fig. 5 Ellipsometry images of the anti-CCP imprinted (MIP) and 
nonimprinted (NIP) QCM nanosensors 

 
TABLE I 

 CONTACT ANGLE MEASUREMENTS OF THE ANTI-CCP IMPRINTED (MIP) AND 

NONIMPRINTED (NIP) QCM NANOSENSORS 

Contact Angle, ° 
MIP NIP 

74.2 79.8 

As seen in Table I, the contact angle of the nonimprinted 
(NIP) QCM nanosensor decreased from 79.8° to 74.2° when 
the hydrophilic template monomer, anti-CCP, added to 
polymerization mixture to prepare the anti-CCP imprinted 
(MIP) QCM nanosensor. Reduction of the contact angle 
showed that the increased hydrophilic property of the surface 
of nanosensor (Fig. 4). 

B. Selectivity Experiment 

Selectivity experiment is one of the most crucial parameter 
for determining the selectivity of the imprinting process. 
Selectivity of anti-CCP imprinted QCM nanosensors was 
investigated by using immunoglobulin M (IgM) in pH 7.0 
phosphate buffer. Table II demonstrated that anti-CCP 
selectivity was 3.8 times higher IgM for anti-CCP imprinting 
(MIP) QCM nanosensor. Results showed that the cavities 
formed in the anti-CCP imprinting (MIP) QCM nanosensor 
specially recognized anti-CCP, indicating that cavities 
matched the size of IgM. 
 

TABLE II 
SELECTIVITY COEFFICIENT OF THE ANTI-CCP IMPRINTING (MIP) QCM 

NANOSENSOR 

 MIP 

∆m k 

Anti-CCP 0.412 - 

IgM 0.108 3.815 

C. Kinetic Analysis 

Kinetic analysis was evaluated by using different 
concentration anti-CCP solutions. ∆f and ∆m sensograms of 
the interaction between the anti-CCP imprinted (MIP) QCM 
nanosensor and anti-CCP solution were shown in Figs. 6 and 
7. While 10 mM pH 7.0 phosphate buffer was used for 
adsorption studies, desorption studies was carried out by using 
1% Tween 20 and 10% acetic acid (HAc) containing solution. 

 

 

Fig. 6 ∆f sensogram of the interaction between anti-CCP imprinted 
(MIP) QCM nanosensor and anti-CCP solution 

D. Future Planning 

Kinetic analysis will be evaluated by studying concentration 
effect on nanosensor adsorption capacity. Association (Ka) and 
diccociation constants (Kd) will be determined to estimate 
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affinity strength. To determine the adsorption model of 
interaction between anti-CCP solution and anti-CCP QCM 
nanosensor, four different adsorption models such as 
Scatchard, Langmuir; Freundlich and Langmuir-Freundlich 
(LF) will be performed. Finally detection limit (LOD) 
calculation will be performed.  
 

 

Fig. 7 ∆m sensogram of the interaction between anti-CCP imprinted 
(MIP) QCM nanosensor and anti-CCP solution 
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