
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

685

Abstract—A large amount of data is typically stored in relational

databases (DB). The latter can efficiently handle user queries which
intend to elicit the appropriate information from data sources.
However, direct access and use of this data requires the end users to
have an adequate technical background, while they should also cope
with the internal data structure and values presented. Consequently
the information retrieval is a quite difficult process even for IT or DB
experts, taking into account the limited contributions of relational
databases from the conceptual point of view. Ontologies enable users
to formally describe a domain of knowledge in terms of concepts and
relations among them and hence they can be used for unambiguously
specifying the information captured by the relational database.
However, accessing information residing in a database using
ontologies is feasible, provided that the users are keen on using
semantic web technologies. For enabling users form different
disciplines to retrieve the appropriate data, the design of a Graphical
User Interface is necessary. In this work, we will present an
interactive, ontology-based, semantically enable web tool that can be
used for information retrieval purposes. The tool is totally based on
the ontological representation of underlying database schema while it
provides a user friendly environment through which the users can
graphically form and execute their queries.

Keywords—Ontologies, Relational Databases, SPARQL, Web
Interface.

I. INTRODUCTION

HE relational database (DB) management systems provide
a stable and robust solution for storing and managing a

large amount of data while they can efficiently handle user
queries. Access to the underlying data is most often provided
to end users and non IT experts in general through customised
forms and interfaces which are tailored to the needs of the
application they serve. However, in the background the
queries applied are SQL-based [1] and, hence, the searching
mechanisms are based on characters (or even bytes) matching
techniques. This, in turn, poses a series of restrictions to both
developers and end users, especially in cases that complicated
queries, which might be semantically expressed in a different,
broader or narrower way than the data at the database(s) and
are, thus, isolated from the structure and vocabularies of the
underlying data source(s), need to be applied to the latter.

Efthymios Chondrogiannis is with the National Technical University of
Athens, 15773, Greece (phone: +30 210 7722132; fax: +30 210 7722132; e-
mail: chondrog@mail.ntua.gr).

Vassiliki Andronikou, Efstathios Karanastasis, and Theodora Varvarigou
are with the National Technical University of Athens, Zografou, 15773,
Greece (e-mail: vandro@mail.ntua.gr, ekaranas@mail.ntua.gr,
dora@telecom.ntua.gr).

Hence, either developers are forced into placing great
programming effort in order to implement mechanisms which
process the submitted queries in order for the latter to be (fully
or partially) applicable to the underlying database or end users
are forced to fully comply with the underlying vocabularies
with a great risk in having a narrower view of the available
data.

Ontologies, which can be formally represented through
RDF Schema (RDFS) [2] and Web Ontology Language
(OWL) [3] among others, enable users to formally describe
the concepts of a domain as well as the relations among them.
They provide a variety of constructors for expressing
meaningful constraints [4] such as organising the concepts in
hierarchies or specifying cardinality restrictions about
properties defined. Based on these key features, ontologies can
provide rich representations of the information available in a
relational database and can be used instead of or in parallel
with the latter, providing a formal description of the
information it contains, by introducing additional constraints
and/or relations that cannot be expressed in the relational
model, while they can also support knowledge inferencing.
However, accessing the data stored in databases using
ontologies requires adequate knowledge of Semantic Web
technologies and especially OWL and SPARQL [5]. Thus, for
allowing users from different disciplines with limited IT
background (e.g., clinical experts) to benefit from ontology-
mediated access to relational databases, a Graphical User
Interface (GUI) is essential.

Despite the fact that a large corpus of research work has
been published so far on ontologies, including but not limited
to ontology representation languages, ontology evolution and
alignment, much fewer efforts have been reported on
accessing their data, especially through a GUI. To our
knowledge, there is no available tool that enables non-IT users
to graphically form a SPARQL query based on the
information provided in an OWL ontology or an ontology on
top of a relational database. In this work, we present an
interactive, semantically enabled, user friendly web tool which
allows users to graphically specify the information they are
looking for, including the condition(s) that the data should
satisfy. In the background, the system automatically generates
the appropriate SPARQL queries, which are then being used
for information retrieval purposes.

More precisely the document is structured as follows. In
Section II we provide related work regarding ontology-
mediated access to relational databases. In Section III, we

A Novel Framework for User-Friendly
Ontology-Mediated Access to Relational

Databases
Efthymios Chondrogiannis, Vassiliki Andronikou, Efstathios Karanastasis, Theodora Varvarigou

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

686

briefly present the approach being followed for enabling users
to graphically form and execute their queries. In Section IV
the Web Application developed for information retrieval
purposes is being presented in detail and Section V includes a
description of the background mechanisms. The discussion
about the tool follows in Section VI and, finally, in the last
section the work presented is summarised.

II. RELATED WORK

The potential use of ontologies in combination with
relational database management systems has been extensively
studied so far and a considerable number of systems and
frameworks have been published, included but not limited to
MASTRO [6], OptiqueVQS [7] and Quest [8]. The systems
are being classified in two broad categories. In the first
category belong systems which produce an ontology based on
the information existing in a data source, which accordingly is
being used for evaluating user queries. The second category
encompasses systems such as D2R [9], which provide only an
ontological representation of the relational database’s schema
while user data remain in the database. Each one of the two
approaches has its own advantages and weaknesses. For
example in the first one, user queries are directly executed,
whereas in the second case query (and in some case results)
translation is necessary. Furthermore, the first approach cannot
properly handle cases involving a large amount of data, due to
the excessive resources (e.g., memory) required.

Concerning the Ontology being used, it may has been either
extracted from the DB schema or designed by the end users.
Regardless of the process being followed for its design,
mapping among the terms of the ontology and the DB schema
is required. In the first case, the mappings are automatically
generated by the system [9]. On the other hand, the
ontological elements specified in the extracted ontology are
explicitly based on the DB schema lacking thereof of a
detailed semantic representation and requiring support from
the DB experts in order to clarify the names and the values
within the target DB. In the second case, the ontology
designed provides a thorough and meaningful semantic
description of the underlying concepts and data. However, the
mappings should be manually specified by the end users, a
process which requires rather great effort (given the need to
cope with syntactic, structural and semantic heterogeneity)
which increases exponentially with the size of the ontology.

For the automated ontological representation of database
schema, in general, for each table a class with the
corresponding Object or Datatype properties is generated
based on their fields [10]. A different approach presented in
the paper [11], according to which for each table all possible
sub-classes (including object properties that point to
subclasses) are also produced taking into account the values in
the fields presented and possible subgroups they can form.
However, in the second approach much more human effort is
required for the design and development of the corresponding
ontology taking into account the large number of entitles
produced and the limited contribution of the relational
database schema and values, from the conceptual point of

view. This stems from the fact that often the names of tables
and fields are not so meaningful (e.g., may provide an
abbreviation of a term rather than its long form), while they
may also lack of formal description.

Concerning the formulation of SPARQL queries, there are a
few publicly available editors such as Flint [12], OpenLink
Virtuoso [13] and Twinkle [14]. The editors facilitate users for
writing a SPARQL query highlighting keywords and verifying
the validity of SPARQL queries formed. However, they
cannot be used by the users which are not familiar with
Semantic Web technologies and non IT experts in general.

For the SPARQL Query Formulation there are only a
limited number of publicly available visual tools. Pubby [15]
is a Linked Data Frontend for SPARQL Endpoints. It enables
users to explore data sources following the links presented.
Nevertheless, it does not allow users to form queries
specifying the conditions the data should satisfy based on their
properties. The rdf:SynopsViz [16] is a framework for
hierarchical charting and exploration of Linked Open Data.
This tool focuses on the classification of terms rather than the
internal structure of data. In fact the classification of terms is
an important parameter when searching in ontologies.
However, ontologies provide a lot of information in terms of
properties and hence the path to be followed for retrieving the
corresponding data should be precisely determined. In the
SparqlFilterFlow [17] it is described the process being
followed for the SPARQL query formulation. However both
the web interface and the interactions with the end user are not
adequately described.

For querying either ontologies or relational databases ad-
hoc web interface has been also developed which they
typically provide a set of forms with a few input fields each
depending on the specific purposes they serve. For example,
the GUI provided by PAT [18] enables users to retrieve the
number of eligible patients based on the eligibility criteria
specified. It should be noted that the process being followed
for the design of such interfaces is rather manual and hence it
requires a considerable amount of time and human resources.

III. OVERALL APPROACH AND METHODOLOGY

The proposed solution for allowing users to apply complex
queries - which are isolated from the structural and
vocabulary-related details of the underlying data source - to a
relational database is based on the ontological representation
of the target database. Nevertheless, ontologies automatically
generated from databases are solely based on the latters’
schema, which is a formal description of the data structure,
and, hence, they are not sufficient for our purpose.
Consequently, the design of an ontology which further
encapsulates the meaning of data is necessary. However, when
dealing with large data sources which contain millions or
billions of records, performance and administrative reasons
impose maintaining the data in the relational database. Hence,
accessing the data requires the transformation of SPARQL
queries (as initially formulated based on the ontology on top
of the database) to the corresponding SQL ones. The
following paragraphs provide a step-by-step presentation of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

687

the overall approach followed along with the technologies
incorporated and/or developed (Fig. 1).

Fig. 1 The Steps we should follow for Linking the Web Application with a Relational Database

A. Automatically Generated DB Schema

Initially, an ontological representation of the database
schema (Schema Ontology) is extracted, based on the DB 2
OWL algorithm [10]. In general, this algorithm automatically
generates an OWL class for each table and an Object or
Datatype property for each field based on their definition.
More precisely, in case a field is a foreign key, an Object
property is being produced, otherwise a Datatype Property is
generated, the range of which depends on the corresponding
SQL datatype. Also the mapping between the ontology and
schema is automatically generated using the D2RQ platform
[19]. It should be noted that, the automatically produced
elements of Schema Ontology are explicitly based on the
information specified in the database (i.e., name and
description) and, hence, may lack their formal description. For
this purpose, for each ontological element, especially when
not being adequately described, the appropriate label and
comments needs to be introduced, in close collaboration with
the DB experts.

B. Design of Database Reference Ontology

In order to provide a real conceptualisation of the domain
that the database covers using a limited number of elements
that the end users can better understand and use for expressing
their queries, the Reference Ontology has been developed, the
design of which was driven by the Schema Ontology. More
specifically, classes have been organised into three categories
(see Fig. 2). The first one, named “Data”, encompasses the
classes that are being used for capturing the parameters for the
entities of their interest (e.g., Diseases, Drugs, in the case of a
database which captures the Electronic Health Records of
patients). The second one, named “Vocabularies”, includes the
classes that are being used to refer to a controlled set of terms
(e.g., ICD 10 Code in the case of a biomedical ontology which
captures diseases among others). In the third category, named

“Complex Data Types”, there are the classes which represent
data that are being captured by one or more properties that
should be examined together, such as Quantity and Period of
time. Concerning Object and Datatype properties, they have
been organised in broader categories, based on the information
they carry whereas properties with the same meaning have
been replaced by one, including but not limited to those
properties that uniquely determine an element (id), codes
(symbols) and their name (human readable description).

C. Design of Vocabularies Ontology

In order to allow information retrieval which does not
require the end users to know the codings and vocabularies
which are used in the database, the controlled set of terms
used is extracted in another ontology; the “Vocabularies
Ontology”. This ontology contains both the international
classification systems being used (downloaded from the web,
since their formal description is often missing from the
database) and any locally defined controlled set of terms. The
latter are often stored in separate tables in which the rest of
database entities refer to. However, in some cases, the values
presented in the database tables can also serve as vocabularies
with specific meanings, depending on the table and/or field in
which they appear. For instance, if the database stores patient
data from a healthcare entity which include information about
the person’s current participation in any clinical trial, then the
value ”X” in the field “CT” may indicate that the person
already participates in another clinical trial (CT), while the
value null may indicate the opposite. In such cases, further
interpretation of the appearing values (including null) is
necessary. For extracting the aforementioned database (DB)
vocabularies in an OWL ontology, the DB-to-OWL tool [20]
has been developed. The ontology produced can be further
processed by domain experts (e.g., in order to organise terms
in categories) using Protégé [21].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

688

Fig. 2 A screenshot from the Ontology-based Web Interface for patient data as captured by a Healthcare Entity. (a) Selection of the parameters
we should present for eligible entities, (b) Specifying an age criterion - in advance we have selected that it should be greater than the given

value, (c) Pop-up window presented for introducing a diagnosis code restriction

D. Mapping Reference Ontology with Schema Ontology

For accessing information residing in a relational database
through the use of Semantic Web technologies, mapping
among the terms of the Reference and Schema ontologies is
necessary. In general, there is a variety of mismatches among
the terms of semantically overlapping ontologies [22].
However, given the specific development process described
above, when mapping the Reference Ontology with the
Schema Ontology, only specific types of mismatches occur.
More precisely, since a few properties with the same meaning
have been replaced by a single one, when mapping the
corresponding properties the domain in which the entities
belong to should be taken into account. Also, in cases in which
two or more properties (e.g., value and unit) have been
replaced by a single one (e.g., quantity) the correspondence
among the group of them should be determined. Finally, for
covering cases in which a datatype property has been replaced
by an object property that points to a controlled set of terms,
the path formed should be mapped with the corresponding
datatype property. For specifying the correspondence among
the aforementioned entities, we have developed and used the
Ontologies Alignment Tool [23], while the mappings rules
specified have been exported in an XML file, based on the
Expressive and Declarative Ontology Alignment Language
(EDOAL) [24].

E. Incorporation of Semantic Web Technologies

The aforementioned mapping is used at run-time (i.e., when
a query is submitted) in order for the applied queries
expressed based on the Reference Ontology to be rewritten
based on the Schema Ontology. The rewritten SPARQL
queries are, in turn, translated into the corresponding SQL

queries by the D2R server and used for retrieving the
appropriate data from the target relational database. It should
be noted that, the query rewriting/translation process
performed is based on the EDOAL (defined by user) and
D2RQ (automatically generated) mapping files, respectively.
In brief, during the SPARQL to SPARQL rewriting process,
for each correspondence specified the system automatically
produces the appropriate transformation rule which determines
the changes that should be applied to the SPARQL query.
Accordingly, the system detects the mapping rules that should
be enforced, based on the specific ontological elements within
the SPARQL query provided. The mapping rules that can be
fired are, then, placed in the correct order and are executed.
The outcome of this process is a semantically equivalent
SPARQL query expressed based on the terms of the Schema
Ontology. A detailed description of the query rewriting
mechanisms has been presented in our previous work [25].

F. The Graphical User Interface

The provision of a user friendly and easy to use means for
accessing a database in an ontology-mediated way, as
described so far, introduces the need for a GUI, which in this
case constitutes an innovative Ontology-based Query
Generation Web Application. This tool allows users to
graphically specify the data of their interest and the conditions
that they should satisfy. In the background, a series of
mechanisms has been implemented through which the user
can determine the aforementioned parameters based on the
Reference and Vocabularies ontologies and a completely
automated SPARQL query is produced for information
retrieval purposes. The generated SPARQL query is, then,
executed using the Query Rewriting System and the data

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

689

retrieved from the relational database are presented through
the web tool.

IV. THE WEB APPLICATION

A. Functionality

The Ontology-based Query Generation Web Application
(OntoQGenApp) provides an interactive environment by
means of which the end users are able to easily navigate
through the elements specified in the Reference Ontology and
graphically formulate their queries. More precisely, the end
users are able to define the type (i.e., class) of data they are
interested in, their characteristics (i.e., properties) to be
evaluated and the condition (i.e., range or set of “acceptable”
values) they should satisfy.

Fig. 2 presents a screenshot of the OntoQGenApp through
an example of accessing anonymised patient data stored in the
relational database of a Healthcare Entity. The classes defined
in the Reference Ontology are presented in the left side of the
screen and the properties that can be applied to an instance of
such a class are presented in the middle of screen. Using the
elements of this panel, the user can graphically formulate their
queries, which are then summarised in the right side of the
screen (and internally being stored in a JSON message – see
Fig. 5). For user convenience, the conditions that the data
should satisfy have been separated into two broad categories
named “inclusion” and “exclusion” (I/E) criteria; i.e., the data

returned as a response to user queries should satisfy all the
inclusion criteria and, in parallel, they should not satisfy any
of the conditions specified in the exclusion ones.

B. Web Tool Architecture

Fig. 3 depicts the main components of the OntoQGenApp
developed. It consists of a web interface through which the
end users can graphically express their queries. In the
background, the tool utilises the services provided by Requests
Handler component.

Fig. 3 The Web Tool (OntoQGenApp) Architecture

TABLE I

FUNCTIONALITY PROVIDED BY REQUESTS HANDLER COMPONENT

ID Name Input Output Description

F1 Classes Classes (Tree)
Provides a JSON message with the OWL classes (placed in such a way that they form a tree)

specified in the Reference Ontology.

F2 Properties Class (URI) Properties (List)
Provides a JSON message with the properties (name, description, range, axioms) from the Reference

Ontology that can be applied to an instance of the OWL class specified.

F3 Suggested Terms String Terms (List)
Provides a JSON message with the terms specified in the Vocabularies Ontology based on the

sequence of characters (string) provided.

F4 Execute Query Query Data Results
Prepares and Executes the appropriate SPARQL query based on query JSON data provided. After the

execution of the query, the data are presented.

Table I summarises the functionality provided by the

Requests Handler according to the user’s actions. In the first
three cases (Table I, F1-F3) the Requests Handler uses the
Ontologies Handler component for retrieving the appropriate
information from the Reference and Vocabularies ontologies
(i.e., Classes, Properties and Suggested Terms). In the last
case (Table I, F4), the Ontologies Handler component initially
produces the appropriate SPARQL query containing the data
specified by the end user, and executes it for retrieving the
relevant data from the relational database.

In the process that generates the SPARQL query; special
attention should be given in the conditions in which a
semantic operator is being used. A semantic operator is an
operator for the evaluation of the boolean expressions formed
we should take into account the meaning beyond the sequence
of characters provided. For instance, the operator “ ”
indicates that any term with narrower meaning than the one
specified is valid. Taking into account that the evaluation of
SPARQL queries is based only on the triples that have been

directly asserted in the RDF graph [26], in order to retrieve all
the semantically correct results without changing the
semantics of SPARQL, the tool initially retrieves all terms
with broader, narrower or the same meaning based on the
semantic operator specified and then includes them in the
SPARQL query executed.

The Ontologies Handler component has a distinctive role in
the developed tool. It is responsible for communicating with
the Reference and Vocabularies ontologies (loaded in the tool)
and provide the data requested by the Requests Handler. The
OWL classes provided (Table I, F1) are organised in a
hierarchy based on the axioms specified. Concerning the
properties “available” for each class (Table I, F2), apart from
their label (or local name, if the label is not available) and
URI, the component also provides their Range and Cardinality
Restrictions (either explicitly specified or inferred). In the case
of coded elements (i.e., terms specified in the Vocabularies
Ontology), for retrieving semantically relevant terms (in this
case, with either similar or narrower meaning) it initially

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

690

creates the Inferred Model based on sub-class axioms
specified using the Pellet reasoner [27], and, then, retrieves the
appropriate data using SPARQL queries. For instance, the
following SPARQL query is executed for retrieving all ICD-
10 [28] terms (i.e., code and label) with a narrower meaning
than the given one (ICD-10 code):

PREFIX rdf: <http://.../rdf-syntax-ns#>
PREFIX rdfs: <http://.../rdf-schema#>
PREFIX icd10cm: <http://.../ICD-10-CM.owl#>

SELECT ?subcode ?sublabel
WHERE {

?cls rdf:type icd10cm:ICD-10-CODE .
?cls icd10cm:code {icd10-code} .

 ?subcls rdfs:subClassOf ?cls .
 ?subcls icd10cm:code ?subcode .
 ?subcls rdfs:label ?sublabel
}

In this SPARQL query, the entity placed within curly

brackets should be replaced by the specific ICD-10 code each

time.

C. Interaction among Components

Fig. 4 presents the interaction between the client and server
side components. As presented, the formulation of user
queries takes place on the client side, whereas the production
of the SPARQL query lies on the server side based on data
recorded. The graphical formulation of the queries is based on
the interactive environment of the tool (Fig. 2) through which
the users are able to specify the properties of the data (using
the button on the left side of each one – Fig. 2 (a)) as well as
the conditions that the data should satisfy, following the
options appearing on their screen next to each property (Figs.
2 (c) and (b)). The latter are explicitly based on the definition
of the corresponding ontological elements in the Reference
Ontology as well as the controlled terminologies provided. A
detailed description of the background mechanisms for query
formulation and the algorithm for generating the
corresponding SPARQL queries is provided in section
follows.

Fig. 4 The interaction among client and server side components

V. BACKGROUND AND MECHANISMS

A. Model-Based Query Formulation

The Reference Ontology, as already mentioned, provides a
formal description of the parameters captured for each entity.
Consequently, by using the Reference Ontology we can
explicitly determine both the data we are looking for (specific
properties) and the conditions that their values should satisfy.
In fact, both of them are tightly linked with the type of the
properties’ value (i.e., Range) as well as the cardinality
restriction (or generally axioms) specified.

The range of a property determines whether a property-
value “restriction” or property-value “expansion” (i.e.,

retrieval of properties based on its range) process will be held.
In case their value is being captured by a primitive data type
(e.g., integer) the range of values in which the values of our
entities should belong to (property value restriction) can be
specified. The available restrictions that can be applied depend
on the specific datatype of each property. For example, when
the value of a property is being captured through a number, a
comparison operator can be used, including “greater-than” and
“equals_to”, while the conditions formed can be combined
with a logical operator (“and”, “or”, “not”) for specifying
more complex restrictions. For the sake of simplicity, users are
also allowed to determine whether the value is within a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

691

specific set or range (especially for integers), despite the fact
that the aforementioned restrictions can be also specified from
the proper combination of logical and comparison operators.

When the value of a property is being captured by a
complex data structure, the available properties should be
examined first and, then, desired restriction(s) as well as their
logical relation be specified. For example, for specifying a
criterion based on diagnosis data, the parameters (such as
disorder and date clinically identified) for each entity should
be first examined and, then, the desired values are determined.
It should be noted that in case more than one “range classes”
are available (e.g., any subclass from the one specified), the
users should first select the appropriate “range class” and,
then, specify the criteria based on the properties of the class
selected.

In case the range of a property is of a “compound” data-type
such as code elements, quantities and period of time, a similar
approach can be followed. More precisely, the available
properties are examined and, then, the appropriate value
restrictions are set. However, taking into account the meaning
of properties which often appear together in queries as well as
users’ needs for a simple interface, an alternative approach is
being also provided. More precisely, for each one of them the
available operators as well as the parameters that should be
provided in each case have been determined. For instance, in
the case of a “coded element”, the users can specify that they
are interested in entities with exactly the same sequence of
characters as the given ones (1 parameter required) or search
for entities with the same, broader or narrower meaning (using
semantic operators). In the case of “quantities” the users can
specify a boolean expression using the comparison operators.
Nevertheless, in this case, they should determine 2 parameters;
both value and unit(s) of measurement.

The cardinality restriction (CardinR) of properties is
another important factor when specifying the conditions the
data should satisfy. The CardinR may have been explicitly
specified in the definition of an OWL class or implied based
on the definition of the properties.

In our work, we would like to highlight three different kinds

of CardinRs. The CardinR “max 1” indicates that an entity
either has a property or not; hence is optional. For this
purpose, we have introduced an additional operator named
“has-value” for detecting those entities for which there is a
specific value in the corresponding property, but it does not
satisfy any further restriction. The CardinR “min 1” indicates
that an entity has a least one instance of such a property.
Consequently, when specifying a restriction, we may possibly
define that we are looking for entities which satisfy “any” of
the values presented or “all” of them. For instance, retrieving
those patients diagnosed with both cancer and arthritis. In
general, when more than one instances of a property may
appear, more than one conditions (i.e., range or set of values)
can be provided in the restrictions formed, which are being
semantically linked with an “and” operator.

Special attention should be given in the CardinR “min 0”
(properties by default have this CardinR, unless any other
axiom is specified). Absence of this property may denote
either that the individual does not have any instance of this
property or that there are one or more instances but they are
not provided. In order to better understand this kind of
relation, one should consider the scenario in which a person is
associated with zero or more diagnoses. In case a specific
person is not associated with any diagnoses, the corresponding
person may either have never had any health problem or the
person’s diagnoses have not been recorded in the database
(missing data). Taking into account the semantics of the
SPARQL language which is based on the close-world
assumption [29] (relational databases also follow this
approach); an entity not having any of the aforementioned
properties simply denotes that the entity does not have such
data. Consequently, in the evaluation of the formed queries,
negation as failure [30] will be used.

B. Automatic SPARQL Query production

The SPARQL query to be applied for information retrieval
purposes is automatically generated by the system based on
the data provided in JSON format (Fig. 5).

Fig. 5 (a) Parameters recorded for each user-defined query, (b) Data presented for the eligible entities, (c) The restrictions with which the
entities should comply, (d) The conditions that the values of properties should satisfy

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

692

The production part of a SPARQL query (i.e., SELECT
clause) determines the information sought after; hence it
contains the variables corresponding to properties selected.
The restrictions part of the query (i.e., WHERE clause)
determines the “path” that should be followed for detecting the
parameters of interest as well as the conditions that should be
satisfied.

In the WHERE clause of the generated query, the triple
patterns should be included which specify the meaning of the
variables presented in the SELECT clause (GraphPattern).
Also, taking into account the fact that conditions are
categorised into positive and negative ones (i.e., inclusion and
exclusion criteria), the WHERE clause includes two additional
main blocks; one for positive conditions (which should be
satisfied) and another one for negative conditions (which
should be not satisfied). In both cases they consist of one or
more triple pattern(s) and FILTER clauses
(GroupGraphPattern) that correspond to the restrictions
provided. However, in the case of negative conditions the
entities should not satisfy not even one of the respective triple
patterns and FILTER clauses. This is being specified in the
generate SPARQL query by using the “FILTER NOT
EXISTS” operator, available at the latest version of SPARQL
(version 1.1 [31]). Alternatively, the “OPTIONAL FILTER
!BOUND” pattern can be used, in which case the variables
present in the “not-bound” clause should be additionally
determined.

In the following lines, the overall structure of the generated
query is provided. It should be noted that the three graph
patterns present in the WHERE clause of the SPARQL query

share the same variable, so that the conditions specified are
applied to the same entities.

SELECT List-of-Variables-for-Parameters-Selected
WHERE {

 GraphPattern (variable, search-data) .
 GroupGraphPattern (variable, inclusion-criteria)
 FILTER NOT EXISTS {
 GroupGraphPattern (variable, exclusion-criteria)
 }
}

The most interesting part in the SPARQL query production
is the process that specifies the restrictions that an entity (i.e.,
variable) should satisfy. This process receives as input one or
more conditions and returns one or more triple patterns
accompanied by one or more FILTER clauses (i.e., a
GroupGraphPattern). In Fig. 6, the algorithm being used in
pseudo-code is presented. The algorithm distinguishes
between two types of conditions: a. Entity Restriction and b.
Value Restriction. The Entity Restriction specifies the type of
entities along with the properties the value of which has been
restricted to a specific set or range (e.g., being a Patient the
age of which is within the range provided, while they have
been also diagnosed with the data that satisfy the conditions
follow). The Value Restriction specifies the conditions that the
values of properties should satisfy (e.g., being older than 55
and diagnosed with Myocardial Infarction). It should be noted
that a Datatype Properties (e.g., age of a person) is being
followed by a Value Restriction whereas an Object Property
(e.g., diagnoses data of a person) by an Entity Restriction.

Fig. 6 The algorithm for Generating the appropriate Triple Patterns and Filter Clauses based on conditions specified

The generated GroupGraphPatterns depend on the type of
restrictions specified for each one of I/E criterion. In case of
an Entity Restriction, the system specifies the class in which
entities should belong to (Fig. 6, Line 11) and accordingly

places the appropriate triple pattern based on the defined
properties. At this point, it should be noted that in case more
than one conditions are provided (e.g., diagnosed with both
cancer and arthritis), the system introduces a different triple

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

693

pattern for each one (Fig. 6, Line 18). Concerning Value
Restrictions, the system introduces the appropriate FILTER
clause based on the boolean and comparison operators
specified. Special attention should be given when a “has-
value” or semantic operator is being used. In the first case, no
FILTER clause is being introduced (Fig. 6, Line 3), whereas,
in the second one, the system initially finds the appropriate
terms based on the semantic operators specified and includes
them in the FILTER clause (functionality provided by
conditions-For-Variable service – Fig. 6, Line 6).

In the WHERE clause of the SPARQL query, apart from the
triple patterns which correspond to I/E criteria, we should also
include the triple patterns that regard the properties that are
requested to be retrieved, as mentioned before. However, in
this case, the variables introduced are not part of any FILTER
clause. Also one triple pattern for each property is specified,
even if more than one instance occurs. Moreover, in case a
property is either optional (CardinR is max 1) or its cardinality
restriction may be zero (e.g., CardinR is min 0), we can also
use an OPTIONAL clause so that we do not exclude entities
which do not have the corresponding property.

Concerning the generated SPARQL query, we can reduce its
complexity by removing unnecessary triple patterns, taking
into account the ones specified for the I/E criteria as well as
their cardinality restriction(s). For example, in case we are
looking for an age property (with cardinality restriction
maximum 1) for which we have already defined a restriction
(hence, the corresponding triple pattern has already been
provided), there is no need to introduce a new triple pattern in
the WHERE clause. However, if we are looking for the
diseases from which the patients suffer (with cardinality
restriction being zero or more) for which we have already
defined a restriction, an additional triple pattern(s) that
correspond(s) to patients conditions should be introduced in
the WHERE clause. This is necessary since if we use the
variables presented in the triple patterns generated for
inclusion/exclusion criteria, we will retrieve only those
problems satisfying restrictions provided and not all the
available ones.

VI. DISCUSSION

When there is the need to specify a variety of conditions,
the graphical user interface will be inevitably rather
complicated. However, by following a model-based approach
for criteria expression, we are focusing on the meaning of
available information and the restrictions that should be
satisfied. In contrast with other approaches which may provide
a specific set of forms for the user to fill in, such as the one
presented in PAT for eligibility criteria specification, in this
work we dynamically form only the restrictions that are
necessary for the query formulation, keeping, thus, the web
interface as simple as possible. More specifically, the
proposed tool does not present in advance a form for the
provision of the target values for a property (e.g., age) but
rather presents the property and its type (e.g. integer) and the
users only interact with the corresponding input fields if they
decide that they wish to define a restriction regarding this

property. Especially when the value of the property captured is
represented by a complex data structure (e.g., diagnoses data),
users can additionally utilize the elements presented by the
tool for specifying the set or range of appropriate values for
the variable. When the value of a property is captured by a
coded element, quantity or period of time, the web interface
allows users to easily handle the property as if it were a
primitive data type without increasing the complexity of the
GUI.

The GUI presented allows users to specify in detail the
target data; a functionality which is not provided by other
tools, such as the web interface provided by D2R server.
Concerning other ontology-based web interfaces, such as
rdf:SynopsViz, the GUI designed is much more advanced
since it enables users to precisely determine the information
they are looking for based not only on their classification but
also their properties. On the other hand, the current version of
the Web Tool produces only a subset of the possible SPARQL
queries we can form. For example in this work we have
assumed that all conditions specified for the properties of
compound data types should be satisfied or not (e.g., inclusion
criterion: diagnosed with Myocardial Infarction “and” the date
diagnoses was in the previous 2 weeks).

In the tool presented, it should be noted that all queries
specified are being translated to semantically equivalent SQL
queries. This is feasible since the design of Reference
Ontology was driven by the elements automatically generated
in the Reference Ontology. Hence, all the ontological elements
specified in the Reference Ontology are properly mapped
(either 1:1 or n:m alignments) with the corresponding
elements from Schema Ontology and accordingly database
schema. This is very important, since when the database
ontology is being arbitrary designed there might be mappings
which are incomplete or partial due to the semantic distance
between the ontology and the database. This, in turn, leads to
cases that the users queries cannot be translated to the
semantically equivalent DB queries, since some conditions
have been ignored due to inability express them using the
terms of DB schema.

Concerning the controlled vocabularies being used in the
formulation of user queries used, they come from the
Vocabularies Ontology, the design of which was driven by the
controlled set of terms specified in the relational database.
Alternatively, a new version of international classification
systems (e.g., ICD 11) or widely accepted codings (e.g., HL7
Sex Codes [32]) can be used. Consequently, mapping among
their terms (i.e., the ones used in the GUI and the ones
specified in the database) is necessary, especially for
translating user queries to the corresponding DB queries. The
data retrieved, can be further processes translating the terms
retrieved from the database to the corresponding ones, based
on mappings specified. However, this process is optional,
taking into account that data retrieved (e.g., name of problems
diagnosed) will be further examined by domain experts.

VII. CONCLUSION

In this work we have presented an interactive web tool that

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

694

allows ontology-mediated access to relational databased in a
user friendly manner. In the background the tool utilises the
information in the Reference Ontology which constitutes both
a structural and semantic representation of the target relational
database and based on which the end users express their
queries through the interactive, user friendly environment
presented. During this process the OntoQGenApp facilitates
the end users, by suggesting candidate terms based on the data
specified in the Vocabularies Ontology while it also enables
users to specify meaningful constraints using semantic
operators. When all conditions have been specified, the system
automatically generates the corresponding SPARQL query
which is then translated into a SPARQL query expressed over
the Schema Ontology, which has been directly derived from
the relational database, and, in turn, produces the semantically
equivalent SQL query to be applied to the target database.

ACKNOWLEDGMENT

This work is being supported by the OpenScienceLink
project [33] and has been partially funded by the European
Commission’s CIP-PSP under contract number 325101. This
paper expresses the opinions of the authors and not necessarily
those of the European Commission. The European
Commission is not liable for any use that may be made of the
information contained in this paper.

REFERENCES
[1] D. D. Chamberlin, R. F. Boyce, SEQUEL: A structured English query

language, In Proceedings of the 1974 ACM SIGFIDET (now SIGMOD)
workshop on Data description, access and control (SIGFIDET '74), New
York, USA, 1974, pp. 249-264, DOI: 10.1145/800296.811515.

[2] D. Brickley, R. V. Guha, RDF Vocabulary Description Language 1.0:
RDF Schema, W3C Recommendation 10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/ (accessed
Nov. 2014)

[3] D. L. McGuinness, F. V. Harmelen, OWL Web Ontology Language
Overview, W3C Recommendation 10 February 2004,
http://www.w3.org/TR/owl-features/ (accessed Nov. 2014)

[4] P. Spyns, R. Meersman, M. Jarrar, Data modelling versus ontology
engineering, in SIGMOD Rec., vol. 31, num. 4, December 2002, pp. 12-
17, DOI: 10.1145/637411.637413.

[5] E. Prud'hommeaux, A. Seaborne, SPARQL Query Language for RDF,
W3C Recommendation 15 January 2008, http://www.w3.org/TR/rdf-
sparql-query/ (accessed Nov. 2014)

[6] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M.
Rodriguez-Muro, et al., The MASTRO system for ontology-based data
access, Semant. web, vol. 2, num. 1 , January 2011), pp. 43-53.

[7] A. Soylu, M. Giese, E. Jimenez-Ruiz, E. Kharlamov, D. Zheleznyakov,
I. Horrocks, OptiqueVQS: towards an ontology-based visual query
system for big data, In Proceedings of the Fifth International Conference
on Management of Emergent Digital EcoSystems (MEDES '13). ACM,
New York, NY, USA, 2013, pp. 119-126, DOI:
10.1145/2536146.2536149

[8] M. Rodríguez-Muro, D. Calvanese, Quest, a System for Ontology Based
Data Access, In OWLED 2012, 2012.

[9] D2R Server: Accessing databases with SPARQL and as Linked Data,
available at http://d2rq.org/d2r-server (accessed Nov. 2014)

[10] N. Cullot, R. Ghawi, and K. Yétongnon, DB2OWL: A Tool for
Automatic Database-to-Ontology Mapping, In Proceedings of 15th
Italian Symposium on Advanced Database Systems (SEBD 2007), 2007,
pp. 491–494.

[11] K. Munir, M. Odeh, P. Bloodsworth and R. McClatchey, "Using
Assertion Capabilities of an OWL-Based Ontology for Query
Formulation", 3rd International Conference on Information &

Communication Technologies: from Theory to Applications (ICTTA),
IEEE, Damascus, Syria, 2008.

[12] Flint SPARQL Editor, available at http://cliopatria.swi-
prolog.org/flint/index.html (accessed Nov. 2014)

[13] OpenLink Virtuoso SPARQL Query Editor, available at
http://demo.openlinksw.com/sparql/ (accessed Nov. 2014)

[14] Twinkle: A SPARQL Query Tool, available at
http://www.ldodds.com/projects/twinkle/ (accessed Nov. 2014)

[15] R. Cyganiak, C. Bizer, Pubby - A Linked Data Frontend for SPARQL
Endpoints, available at http://wifo5-03.informatik.uni-
mannheim.de/pubby/ (accessed Nov. 2014)

[16] N. Bikakis, M. Skourla, C. Papastefanatos, "rdf:SynopsViz - A
Framework for Hierarchical Linked Data Visual Exploration and
Analysis", available at http://83.212.97.83:8084/ (accessed Nov. 2014)

[17] F. Haag, S. Lohmann, T. Ertl, SparqlFilterFlow: SPARQL Query
Composition for Everyone, The Semantic Web: ESWC 2014 Satellite
Events, 2014, pp. 362-367, DOI: 10.1007/978-3-319-11955-7_49.

[18] A. Tagaris, V. Andronikou, E. Karanastasis, E. Chondrogiannis, C.
Tsirmpas, T. Varvarigou, D. Koutsouris, PAT: an intelligent authoring
tool for facilitating clinical trial design. Stud Health Technol Inform.,
2014, pp. 205:970-4.

[19] C. Bizer, and A. Seaborne, D2RQ - Treating Non-RDF Databases as
Virtual RDF Graphs, in 'ISWC2004 (posters)', 2004

[20] DB to OWL Tools, available at
http://ponte.grid.ece.ntua.gr:8080/DbToOwl/ (accessed Nov. 2014)

[21] Protégé, available at http://protege.stanford.edu/ (accessed Nov. 2014)
[22] M. Klein, Combining and relating ontologies: an analysis of problems

and solutions, In IJCAI-2001 Workshop on Ontologies and Information
Sharing, Seattle, WA, 2001, pp. 53-62.

[23] E. Chondrogiannis, V. Andronikou, E. Karanastasis, and T. Varvarigou,
An Intelligent Ontology Alignment Tool Dealing with Complicated
Mismatches, Accepted for SWAT4LS Workshop 2014.

[24] EDOAL: Expressive and Declarative Ontology Alignment Language,
available at http://alignapi.gforge.inria.fr/edoal.html (accessed Nov.
2014)

[25] E. Chondrogiannis, V. Andronikou, K. Mourtzoukos, A. Tagaris, and T.
Varvarigou, A novel query rewriting mechanism for semantically
interlinking clinical research with electronic health records, In
Proceedings of the 2nd International Conference on Web Intelligence,
Mining and Semantics (WIMS '12), ACM, New York, USA, 2012, pp.
48:1-48:12, DOI: 10.1145/2254129.2254189.

[26] M. Arenas, J. Perez, Querying semantic web data with SPARQL, In
Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems (PODS '11), ACM, New
York, NY, USA, 2011, pp. 305-316, DOI: 10.1145/1989284.1989312.

[27] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, Pellet: A
practical OWL-DL reasoner. in Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 5, num. 2, 2007, pp. 51-53, DOI:
10.1016/j.websem.2007.03.004.

[28] International Classification of Diseases (ICD), 10th version, available at
http://apps.who.int/classifications/icd10 (accessed Nov. 2014)

[29] G. Bossu, P. Siegel, Saturation, nonmonotonic reasoning and the closed-
world assumption, Artificial Intelligence, vol. 25 num. 1, Jan. 1985, pp.
13-63, Jan. 1985, DOI: 10.1016/0004-3702(85)90040-2.

[30] K. L. Clark, Negation as Failure, Logic and Data Bases, 1978, pp. 293-
322, DOI: 10.1007/978-1-4684-3384-5_11

[31] S. Harris, A. Seaborne, SPARQL 1.1 Query Language, W3C
Recommendation 21 March 2013 (accessed Nov. 2014)

[32] Administrative HL7 sex Code System, available at
https://phinvads.cdc.gov/vads/ViewValueSet.action?oid=2.16.840.1.114
222.4.11.927 (accessed Nov. 2014)

[33] E. Karanastasis, V. Andronikou, E. Chondrogiannis, G. Tsatsaronis, D.
Eisinger, A. Petrova, The OpenScienceLink architecture for novel
services exploiting open access data in the biomedical domain. In:
Proceedings of the 18th Panhellenic Conference on Informatics (PCI
'14), ACM, New York, NY, USA, 2014, pp. 28:1-28:6.

